
Designing Emergence:
Automatic Extraction of Stigmergic
Algorithms From Lattice Structures

James G. Adam

A thesis submitted for the degree of Doctor of Philosophy
Department of Computer Science

University of Essex

2005

Abstract

The complex behaviour of relatively-simple creatures in nature, such as that of social insects,
has often inspired research into how such intricate networks of cooperation operate, and how
such cooperation can be implemented to solve other problems. Stigmergic construction
techniques attempt to demonstrate how complex structures may be built without explicit
communication between agents.

An abstract model of sematectonic stigmergic construction was presented in 1995 by
Bonabeau & Theraulaz[158, 156], capable of reproducing some of the complex structures
observed in social insect research. The investigation into this model was motivated by the
potential application of stigmergic techniques, by engineers and designers, as the basis of as
system of artificial construction.

In this thesis, their model and assertions are critically reviewed, and the concepts provided
by Bonabeau & Theraulaz[158, 156, 22, 19] shown to be insufficient for use in arbitrary con-
struction tasks. A new software implementation and new concepts for considering the beha-
viour of stigmergic algorithms – post-rules – are devised and presented as a more concrete
basis for investigation. Computational constraints surrounding Bonabeau & Theraulaz’s
approach, which prohibit further consideration using their techniques, are then presented.

In an attempt to address the motivation which inspired the original work, a novel process
is presented, which allows the automatic generation of stigmergic algorithms from arbitrary
existing structures. A new algorithm is presented which reduces the complexity of a stig-
mergic rule set. Limitations of this approach are discussed, and several refinements which
improve the quality of the extracted algorithm are then described in detail, along with ex-
perimental results.

Finally, our ability to derive stigmergic algorithms of the same quality as those noted in
nature is investigated, and the limitations of sematectonic stigmergy for arbitrary architec-
ture construction are investigated and shown in detail.

Acknowledgements

I would like to express my greatest thanks to my supervisor Owen Holland for his continual
support and guidance throughout this project, without whom I would not have reached this
point. I would also like to thank my family and friends for providing an anchor for my sanity
whilst walking through the philosophical quicksand surrounding ‘emergence’. I would like
to express my particular gratitude to Murray Steele and Catriona Macdonald for their kind
assistance in proof-reading this work, despite its constant revision from under their feet, and
to Siobhán Mitchell, for her constant support despite the many long and frustrating hours
required.

My thanks also go to Guy Theraulaz, Kjerstin Easton and Joe Andrieu at CalTech for
their support in making the Nest-2.11.1 software available for this project, and also in kindly
answering my queries regarding its implementation.

C’THULU!

Dedicated to my grandparents.

Table of Contents

1 Introduction 1
1.1 Dial M For Mars . 1

1.1.1 At Home in the Universe . 2
1.1.2 Remote Robotic Construction . 3
1.1.3 Construction on Mars: A Summary 3

1.2 The Rise of the Insects . 4
1.2.1 Emergence and Collective Intelligence 4
1.2.2 Why Use Swarm Intelligence? . 5
1.2.3 Swarm Intelligence for Autonomous Construction 6

1.3 The Nest Model of Swarm Construction . 7
1.3.1 Nest in Action . 8
1.3.2 Nest – A Candidate for Autonomous Construction 8

1.4 Designing Emergence and Swarm Construction 8
1.5 Thesis Outline . 10

2 Related Work 12
2.1 Emergence . 12

2.1.1 Defining Emergence . 13
2.1.2 Second-Order Emergence . 15
2.1.3 Strong and Weak Emergence . 16
2.1.4 Detecting and Measuring Emergence 18
2.1.5 Emergence and Self-Organisation . 20
2.1.6 Emergence in Abstract Systems . 22

2.2 Emergent Multiagent Systems: Swarm Intelligence 25
2.2.1 Swarm Intelligence . 25
2.2.2 Foraging . 25
2.2.3 Cooperative Transport . 27
2.2.4 Clustering and Sorting . 27
2.2.5 Construction and Coordinated Assembly 31
2.2.6 Ant Colony Optimisation . 32

2.3 Stigmergy . 35
2.3.1 A Brief History . 35
2.3.2 Types of Stigmergy . 37
2.3.3 Quantitative Stigmergy . 38
2.3.4 Qualitative Stigmergy . 38
2.3.5 Alternative Stigmergic Mechanisms 39
2.3.6 Some Stigmergic Systems . 40
2.3.7 Stigmergy, ACO and Swarm Intelligence 41

TABLE OF CONTENTS iv

2.4 Designing Emergent Multiagent Systems . 41
2.4.1 Controlling Emergence via Symbolic Behaviours 42
2.4.2 From Simulation To Robotics . 42
2.4.3 Designing Emergence with Stigmergic Construction 44

2.5 Initial Conclusions . 46

3 Nest-2.11.1 – Nest Building using Discrete Stigmergy 47
3.1 Lattice Swarms . 48

3.1.1 Terminology . 49
3.2 The Nest-2.11.1 Software . 50

3.2.1 Nest-2.11.1 Implementation . 51
3.3 Coordinated Algorithms and Coherent Structures 53
3.4 Evolution of Stigmergic Algorithms . 54

3.4.1 An Improved Fitness Function . 56
3.4.2 Results . 57

3.5 Critical Evaluation . 58
3.5.1 Algorithm Length . 58
3.5.2 A Subjective Fitness Function . 59
3.5.3 Smoothness of the Problem Space . 60

3.6 Related Systems . 61
3.6.1 Variations on Abstract Stigmergy . 61
3.6.2 Relationships to Other Abstract Emergent Systems 61

3.7 Nest-2.11.1 – Summary . 65

4 The Nest-3.0 System 67
4.1 Nest-3.0 vs. Nest-2.11.1 . 67
4.2 Abstract Stigmergic Improvements . 68

4.2.1 Brick Geometry . 68
4.2.2 Perceiving the Local Environment . 70
4.2.3 Rotation . 71
4.2.4 Agent Behaviour . 72
4.2.5 Architecture Modification - Building and Excavation 75
4.2.6 Rule Matching . 76

4.3 Implementation Overview . 77
4.3.1 Programming Languages and Libraries 77
4.3.2 System Architecture . 80

4.4 Implementation Details . 83
4.4.1 System Objects . 83
4.4.2 Cells, Bricks and States . 84

4.5 Cubic Geometry . 85
4.5.1 Matching Neighbourhoods using Bit Arrays 85
4.5.2 Rotation of Cubic Structures . 87
4.5.3 Rotating Architectures using Index Mapping 88
4.5.4 File Format . 92
4.5.5 Summary . 93

4.6 Hexagonal Geometry . 93
4.6.1 Rotation of Hexagonal Structures . 97
4.6.2 File Format . 99
4.6.3 Summary . 100

TABLE OF CONTENTS v

4.7 Simulation Implementation . 100
4.7.1 The Simulation . 101
4.7.2 Agent Implementation . 103
4.7.3 Simulation Optimisations . 105

4.8 Future Extensions . 107
4.8.1 More Geometries . 108
4.8.2 Agent State . 108
4.8.3 Pheromones . 108
4.8.4 Architecture Evaluation . 109

4.9 Nest-3.0 Summary . 109

5 Automatic Generation of Coordinated Stigmergic Algorithms 110
5.1 Coordinated Algorithms . 111

5.1.1 Building Stages . 111
5.2 Coherent Structure: Measuring the Value of Architectures 117

5.2.1 Existing Nest-2.11.1 Measures of the ‘Coherency’ of Structures . . . 118
5.2.2 Architectural ‘Features’ . 118
5.2.3 Structural Coherence through Behavioural Consistency 122
5.2.4 Structure without Stages . 123
5.2.5 The Perception of Structure . 125

5.3 Beyond Stages: Post-Rules . 126
5.3.1 The Simplest Stigmergic System . 126
5.3.2 The Simplest Rule and The Two-Colour Assertion 129

5.4 A Note Regarding Geometries and Dimensionality 129
5.4.1 Post-Rules . 130
5.4.2 Pre-Rules . 136
5.4.3 Meta-Rules . 136
5.4.4 Post-rules, Pre-rules and Excavation 137
5.4.5 Pre- and Post-rules – Summary . 140

5.5 Automatic Generation of Stigmergic Algorithms using Post-Rules 141
5.5.1 An Intractable Problem Space . 141
5.5.2 Rule Selection in Algorithm Generation 142
5.5.3 Post-Rules and Algorithm Generation 144
5.5.4 Single-Rule Systems and Post-Rule Uncertainty 147
5.5.5 The Real Benefit of Post-Rule Selection 149

5.6 Automatic Algorithm Generation – Summary 150

6 Automatic Algorithm Extraction 152
6.1 The ‘Holy Grail’ . 153

6.1.1 From Modelling to Manufacturing: Applied Stigmergy 153
6.2 Simple Stigmergic Algorithm Extraction . 154

6.2.1 Ordering and Rule Extraction . 155
6.2.2 Brick Colours . 156
6.2.3 Simple Algorithm Extraction – Summary 157

6.3 Simple Algorithm Extraction Assumptions 157
6.3.1 The Assumption of Coordination . 158

6.4 Practical Algorithm Extraction: A First Attempt 159
6.4.1 Ordering . 160
6.4.2 State Assignment . 162

TABLE OF CONTENTS vi

6.5 Simple Stigmergic Script Extraction: Summary and Evaluation 164
6.5.1 Properties of Extracted Stigmergic Algorithms 166
6.5.2 Quality of Extracted Algorithms . 167
6.5.3 Improving Algorithm Extraction . 168

7 State Assignment 169
7.1 Brick States and Rule Conflict Management 169
7.2 Post-Rule Conflict Resolution . 170

7.2.1 The Simplest System, Revisited . 170
7.3 From One to Many: Desired Post-Rules . 172

7.3.1 State Assignment with Two Rules . 173
7.4 Brick Tagging . 173

7.4.1 Missing Post-Rule Information . 176
7.4.2 Assigning Values to Post-Rule Bricks 176
7.4.3 Tagging . 177
7.4.4 Minimal State Assignment . 178

7.5 The Increasing States Algorithm . 180
7.6 State Assignment and Rotated Rules . 180
7.7 Evaluation of Increasing States Algorithm 185

8 Ordering 186
8.1 The Importance of Ordering . 186
8.2 Ordering Problems . 187

8.2.1 Job-Shop Scheduling . 187
8.2.2 Genetic Algorithms for Combinatorial Problems 188
8.2.3 An Overview of the Genetic Algorithm Approach 189

8.3 Ordering Bricks using a Genetic Algorithm 189
8.3.1 Direct Encoding of Brick Ordering 190
8.3.2 Crossover using Direct Encoding . 191
8.3.3 Repetition . 191
8.3.4 Structurally Invalid Orderings . 192
8.3.5 Mutation using Direct Encoding . 193
8.3.6 Summary of Direct Encoding . 194

8.4 Indirect Representation of Brick Ordering 194
8.4.1 Crossover using Indirect Encoding . 196
8.4.2 Mutation using Indirect Encoding . 198
8.4.3 Indirect Encoding Example . 198

8.5 Genetic Algorithm Implementation . 198
8.6 Experimental Results . 200

8.6.1 Fitness Trends . 201
8.6.2 Experimental Parameter Selection . 203

8.7 Evaluation of Ordering Using Genetic Algorithms 204
8.8 Algorithm Extraction – Summary Review 204
8.9 Limitations of Increasing States and Ordering 205

TABLE OF CONTENTS vii

9 Pattern-based Ordering 207
9.1 Patterns and Substructures . 208

9.1.1 A Simple, Minimal Example . 208
9.1.2 Repeating Rules . 209
9.1.3 Modularity and Types of Repetition 210
9.1.4 From Repeated Modules to Building Stages 211
9.1.5 Architecture Construction using Repetition 212

9.2 Accuracy and Control in Architecture Construction 213
9.2.1 Limiting Stigmergic Construction in Nest 214
9.2.2 Precisely-Sized Structures . 214
9.2.3 Minimal Brick Colours and Accurate Replication 216

9.3 Accurate Construction with Repeating Modules 217
9.3.1 Local vs. Global Measurement . 219
9.3.2 Accurate Construction With Repeated Modules – Summary 220

9.4 Pattern-based Rule Extraction from Existing Structures 220
9.4.1 A Simple Example of Pattern-based Rule Extraction 221
9.4.2 Automatic Pattern-based Rule Extraction 224

9.5 Automatic Identification of Structural Patterns 225
9.5.1 Substructure Discovery . 225
9.5.2 The Application of SUBDUE to Stigmergic Algorithm Extraction . . 228
9.5.3 Pattern Selection and Sets of Patterns 230
9.5.4 Pattern Set Selection and Intractability 231

9.6 Modular Overlap and Brick Colour Assignment 231
9.6.1 Modular Overlap and The Increasing States Algorithm 232
9.6.2 Modular Overlap and Ordering . 233

9.7 Self-Activating Modules and Endless Construction 234
9.7.1 Structural Dependencies and Ordering 236
9.7.2 Self-Activating Modules and Rotation 237

9.8 Summary – Limitations of Pattern Extraction 238
9.8.1 Guaranteeing Minimality . 240
9.8.2 Modular Construction in Other Abstract Systems 240
9.8.3 Stigmergy, Local Information and the Limits of Nest 241

10 Discussion 242
10.1 Designing Emergence with Stigmergy . 242
10.2 Nest Systems and the Real World . 243

10.2.1 Limiting Building Behaviour using Quantitative Stigmergy 244
10.2.2 Quantitative Stigmergy and Global Construction Control 244
10.2.3 Quantitative Stigmergic and Algorithm Extraction 246

10.3 A Measure Of Stigmergic Algorithm Quality 247
10.3.1 Stigmergic Algorithm Complexity . 247
10.3.2 Stigmergic Algorithm Quality . 248
10.3.3 Algorithm Quality and The Motivation for Emergence 249

10.4 Stigmergic Complexity . 249
10.5 Beyond Modules: The Construction of Features 250
10.6 Future Work . 251

10.6.1 Beyond The Nest Model . 251
10.6.2 Stigmergic Architecture Repair . 253

TABLE OF CONTENTS viii

10.6.3 An Interactive Approach to Modular Deconstruction 255

11 Conclusions 256

Bibliography 266

List of Figures

1.1 An architecture built by the Nest-2.11.1 software (described fully in Chapter
3). 7

2.1 Two ‘Braitenberg Vehicles’[25]. The speed of each ‘motor’ is directly propor-
tional to the amount of light detected by the connected ‘sensor’. 23

2.2 A robotic sorting implementation, using two colours of frisbee. Initially, sev-
eral groups of objects are formed. Eventually, one cluster is eroded and a
single cluster is formed. The lower image depicts the system after adjust-
ment to more clearly demonstrate annular sorting; the black discs have been
clustered in a central pile, and the yellow discs evenly spread in a surrounding
‘aura’. 30

2.3 The sequential building activity of the wasp Paralastor. Adapted from [157]. 36
2.4 When a stimulating environmental configuration is created out of sequence,

the pathological building behaviour of the stigmergic agent is revealed. Ad-
apted from [157]. 37

2.5 Mason’s ‘stigmergic programming’. The next location of building is defined
by rules specifying the strengths of both pheromones A and B. On the right,
the resulting curved wall of construction is shown. Figure adapted from [115];
the dashed red vectors are discussed in the text. 45

3.1 A simple representation of the main features of a lattice swarm system. . . . 48
3.2 The main interface window for the Nest-2.11.1 software. 51
3.3 Editing rules in the Nest-2.11.1 software. 52
3.4 An architecture built by the Nest-2.11.1 software. 52
3.5 Generation of a Construction Graph. The rules on the left of the figure pro-

duce the central architecture when run in simulation. The construction graph
on the right represents fully the construction process. Each node represents
a brick, the internal labelling indicating the order of placement and the rule
responsible. The initial brick, as a special case, is labelled with rule id −2,
indicating that it was not placed by any rule within the algorithm. 57

3.6 Examples of Diffuse-Limited Aggregation (DLA), Cellular Automata and L-
System structures. 62

4.1 An example of an interface to the Nest-3.0 system. 68

LIST OF FIGURES x

4.2 To create the structure above, all rules above must be present within the
agent’s rule set. However, if rotated versions of rules are allowed to match
local environment configurations, only the rules in A are required, at the very
beginning of the simulation. Each rule in B is a rotated version of the final
rule in A. Using rotated rules allows a helix around a central column to be
built using effectively only 4 rules, rather than 10. 72

4.3 An alternative view of a structure, using the GLUTViewer display system. The
cursor is shown as a highlighted green wireframe cell, with an arrow indicating
which direction is ‘NORTH’. The panel in the lower-right of the screen shows
the information for the selected Cell. In this screenshot, Cells are displayed
using the ordering and encoded values, rather than a solid colour. 80

4.4 An overview of the composition of software modules within the Nest-3.0 system. 81
4.5 A simple architecture, first seen in Figure 4.1, after processing by the Al-

gorithm Engine. The viewer has been switched to rule display mode, in which
the build cell is highlighted, neighbourhood cells within that rule are shown
dimmed, and unrelated cells are transparent. 83

4.6 Indexing of a three-dimensional cubic structure. The flat, planar layout on
the right is used in following sections to clearly display 3D architectures in
two dimensions. 86

4.7 Rotational Equivalence. Cubes a) and b) are initially identical. Cube a) is
rotated once through the y-axis, and then once through the z-axis. Cube b)
is rotated once through the z-axis, and then once through the x-axis. Both
result in identical orientations. It is important to note that the axes do not
rotate with the cube. 88

4.8 An illustration of cell index rotation through the Z axis on a 3× 3× 1 (‘2D’)
matrix. Using the first as an example, each element of the transform array
can be read as “when rotated through Z once, the cell at index 0 has the
value of the cell originally at 6.” . 89

4.9 The mapping and function to produce indexes rotated through the X-axis for
cubic architectures of size s. 90

4.10 The mapping and function to produce indexes rotated through the Y -axis for
cubic architectures of size s. 90

4.11 The mapping and function to produce indexes rotated through the Z-axis for
cubic architectures of size s. 91

4.12 Ruby code from the cubic Architecture implementation, which converts a
large integer value into a series of Cells within a cubic lattice. 92

4.13 Inter-Cell linkage in the hexagonal lattice. Each Cell is linked to the 8
face-adjacent cells – six within the same plane of cells, one above and one
below. 94

4.14 Closing the loop – a cell placed NW of Cell 5 must also be linked in the SW

direction to Cell 1. 95
4.15 Hierarchies of hypercells are used to define sub-regions within the lattice. . . 96
4.16 Linking hexagonal cells using a ‘Hyper Lattice’. 97
4.17 The HyperStructure used to construct the interlinked Cell network. The lat-

tice space is expanded through dimensions, each dimension using neighbour-
hood information from the dimension above in order to ensure that inter-cell
links are valid in the final ‘real space’ dimension. 98

LIST OF FIGURES xi

4.18 The initial fragment of an architecture file representing a simple ring of cells.
The header consists of the first two lines, and each subsequent line details a
single Cell object within the structure. 99

4.19 The Nest-3.0 simulation run cycle code, implemented in Ruby. 102
4.20 The Ruby code describing the behaviour of a simple Nest-3.0 agent. This

agent first matches its current location against the rule set, and builds a brick
if a match is found. Secondly it attempts to move into an adjacent empty
Cell object. If no empty cell can be found, the agent is moved to a random
empty location within the structure (‘warping’). 104

4.21 A modified agent movement function which ensures that the agent is always
in a cell which is face-adjacent (i.e. a direct neighbour) of a cell which is not
empty. 106

5.1 A simple set of rules building a coherent architecture. Each rule in this ex-
ample can be considered a distinct building stage. If Rule A fires at location
X, then simulating configurations for both rule/stage A and rule/stage B are
present within the system (at locations 1 and 2 respectively. 115

5.2 Architecture A – a set of planes from a vertical column – seems obviously
structured. Architecture B initially appears random and space-filling, until
we consider the regions of empty space defined by the structure. 119

5.3 Spider webs undergoing functional evaluation using the NetSpinner software.
Illustration taken from [103]. 120

5.4 With rotation enabled, seemingly-complex architectures with clearly defined
features (in this case corridors and chambers of definite sizes) can be produced
with extremely simple rule sets. The results of two different simulations are
shown in the right, both using the same two rules on the left, plus all rotations
through the Z-axis (effectively 8 rules if fully specified). 124

5.5 Illustrating the maximum cavity width of 2 bricks. Cells which are greyed out
represent locations where no rule will match at any point. In architecture C,
it is not possible to prevent the ‘cornering’ rule from firing in location X and
thus producing an identical architecture to A. 125

5.6 The simplest stigmergic system, consisting of a single rule which fires to pro-
duce a straight line of cells. The system will continue building until manually
stopped. 127

5.7 The single-rule stigmergic system, this time using a different colour for the
build brick. After matching once, the rule cannot fire again. 127

5.8 Further examples of single-rule stigmergic systems. In each case, construction
continues until externally halted. All systems except for d) produce a straight-
line structure. The structure produced by d) has structure, but because of
the allowed rotations the line produced is not straight. 128

5.9 Determining the post-rules of the single rule from the simplest stigmergic
system. Meta-rules for each of the 7 empty cells are generated. Dotted cells
in meta-rules may be either filled or empty. The expansion shown contains
the original rule itself, showing that it will cause itself to fire repeatedly.
UNDEFINED cells are shown with a dotted fill 133

5.10 The post-rule generation algorithm. 134

LIST OF FIGURES xii

5.11 Building stages shown as relationships between rules using post-rules. Each
stage consists of sequences or loops of post-rules. New stages are entered by
following post-rule links outside the current loop. 135

5.12 The pre-rule generation algorithm, for generating those rules which if fired
may create the environmental configuration the given rule matches. 136

5.13 The number of UNDEFINED cells depends on the geometry of the rules, and
the position of the meta-rule’s central cell in the original rule. 138

5.14 Meta-rules generated when excavation is enabled. 139
5.15 Two ‘random’ algorithms. Algorithm a produces no structure, placing no

bricks. Algorithm b places bricks indefinitely. 143
5.16 Generating stigmergic algorithms using post-rules. 144
5.17 Adding a new stage using post-rules. 145
5.18 A stigmergic algorithm generated using post-rule information. In the con-

structed architecture, bricks are labelled with the rule id which placed the
brick. 145

5.19 A second stigmergic algorithm generated using post-rules. During simulation,
one of the post-rules never fires. 146

5.20 A single-rule stigmergic system that does not built continually, but instead
produces one of two possible 3-brick architectures. 147

5.21 Two examples of rules which are post-rules of themselves, but require specific
environmental configurations to trigger. 148

6.1 A simple architecture, as produced by the Nest-3.0 system. 155
6.2 Using brick ordering to extract rule structure from a pre-generated architecture.156
6.3 Ruby code for creating a set of rules from an architecture in which each brick

has been assigned an order. 156
6.4 An alternative ordering on the bricks from the simple structure shown in

Figure 6.2 produces different rules. 158
6.5 Random brick ordering for a simple 5-brick architecture. Orderings 1, 2 and

3 are valid while ordering 4 is invalid for the given labelling/architecture. . . 160
6.6 Two single-brick rules are produced with the random brick ordering of the

simple architecture. The resulting simulation features many unconnected
orphan bricks. 161

6.7 Producing a random valid order by performing a random walk over the graph
of bricks. 162

6.8 The algorithm for assigning a random, valid ordering to an architecture . . . 163
6.9 The random ordering from Figure 6.7 is applied to the simple architecture

from Figure 6.1 (minus brick colour information), and rules are extracted. . . 164
6.10 Applying a unique colour to all bricks removes all post-rule conflicts and self-

activating rules from the stigmergic algorithm. The simulated architecture
matches exactly the input architecture specified in Figure 6.1. 164

6.11 Some examples of architectures to which rule extraction has been applied. . . 165
6.12 Differing brick orderings produce different minimal orderings. 166
6.13 A ring-building algorithm which uses only four brick colours, rather than the

six required by algorithm a) in Figure 6.11, and a manually-derived optimal
algorithm for the same structure requiring only five rules and three brick colours.167

7.1 State Assignment in a simple, single-rule algorithm. 171

LIST OF FIGURES xiii

7.2 A stigmergic system with two rules. Post-rule conflicts are identified, along
with the specific brick matches. 172

7.3 State assignment using the rules from Figure 7.2. 173
7.4 A more complex state assignment example. Rule 5 is detected as a post-rule

of Rule 1, but the later assignment of colour RED to brick 4 fails to take this
information into account. The resulting algorithm is flawed. All bricks are
initially of UNDEFINED (grey) state. Matching bricks in post-rules are shown
as unfilled with coloured id. ‘Desired’ post-rules are crossed out. 175

7.5 An illustration of post-rule state assignment during algorithm state assigment.
The resulting assignments a) fail to consider the dependencies between post-
rules, and b) introduce more states than are required. 177

7.6 State assignment using ‘tagging’. Assignment proceeds as Figure 7.4 until
the consideration of Rule 4. Previous brick match conflict information is
combined with current post-rules to determine the new brick colour. 179

7.7 The final, state-optimised algorithm, shown with simulation results. 180
7.8 The Increasing States Algorithm. 181
7.9 The Increasing States Algorithm implementation, in Ruby. 182
7.10 The Increasing States algorithm performed on an arbitrary structure. 183
7.11 Despite state assignment, if rotations are allowed the progress of construction

is not deterministic. 184

8.1 The typical workflow of a genetic algorithm. 190
8.2 Two single-brick rules are produced with the random brick ordering of a simple

architecture. The resulting simulation features many unconnected orphan
bricks. Repeated from Figure 6.6. 190

8.3 Simple crossover using a direct encoding representation. Invalid orderings are
easily produced as a result of the crossover. 191

8.4 Correction of repeated labels after a crossover operation. The final, corrected
child ordering contains no information from the the second parent. 192

8.5 Advanced crossover pattern-finding with a direct encoding representation . . 192
8.6 An invalid random ordering for the given labelling/architecture. See also

Figure 6.5. 193
8.7 Label-grouped crossover resulting in offspring solutions with invalid orderings 193
8.8 The sequence of decisions taken when creating a valid ordering from an archi-

tecture. 195
8.9 The sequence of decisions taken when creating a valid ordering from an archi-

tecture. 196
8.10 Examples of indirect encoding processed into a brick orderings. Each step

shows the ordering of another brick, based on the interpretation of previous
parts of the genome. In this example the order of precedence when generating
N is N,NE,SE,S,SW,NW. 199

8.11 Experimental results using a genetic algorithm to evolve brick orderings. . . 202
8.12 Examples of 20- and 30-brick randomly generated architectures, after ordering

using the genetic algorithm and brick colour assignment by the Increasing
States algorithm. 203

9.1 A stigmergic algorithm in which |R| < |B|, taken from Figure 6.13. Rule 4
in this algorithm fires twice, at separate locations, to produce the two, short
vertical columns highlighted in the final construction on the right. 208

LIST OF FIGURES xiv

9.2 Two types of repetition in simple rule systems. Rule A will fire once at site
X1, and then once again at site X2. Rule B is self-activating, and will fire
repeatedly until stopped. 210

9.3 Two types of architecture module repetition: self-activation and stem-and-leaf.210
9.4 Self-activating and stem-and-leaf modular construction shown as building

states. SR indicates the particular module/state which is repeated. 211
9.5 A simple architecture demonstrating both self-activating and independent or

stem-and-leaf repetition using during construction. 213
9.6 Two methods of limiting the size of constructed architectures: external struc-

tures and discrete brick colouring. 215
9.7 The size of an agent’s perceptual area is limited to a single neighbourhood as

defined by the abstract stigmergic system. The agent therefore cannot determ-
ine the size of structural elements equal or greater than the neighbourhood
size. 216

9.8 Exploiting the exclusion of rotation to reduce the number of brick colours
required to build a column. 217

9.9 Dimensions of the structure for which an ordering was evolved in Section 8.6
(see also Figure 8.11). 218

9.10 A simple structure featuring the controlled repetition of modules. 218
9.11 Controlled, limited repetition of leaf modules. 219
9.12 A simple architecture, and possible divisions into patterns. 221
9.13 Ordering and state assignment of the selected modular deconstruction of the

simple architecture presented in Figure 9.13. 223
9.14 Module neighbourhoods must be considered when assigning brick colours. . . 223
9.15 State assignment of extract rules, highlighting linked bricks. 224
9.16 A simple configuration of objects on which Subdue can operate. 227
9.17 The Subdue substructure discovery algorithm (adapted from [81]). 227
9.18 The subdue graph for a Nest architecture. Because the links are undirected,

only half of the neighbour directions need be explicitly used – an UP link
between two bricks automatically implies the corresponding DOWN link. 229

9.19 Structural patterns found by Subdue in the example architecture. 229
9.20 A more complex module neighbourhood. The ordering dependencies between

multiple bricks and multiple modules considerably complicate the assignment
of consistent colours to bricks within a module’s neighbourhood. 232

9.21 Ordering of the inner bricks within a module can be problematic if the rela-
tionship between modules is not consistent throughout the entire architecture. 235

9.22 An example of a ‘useful’ self-activating rule/module. 236
9.23 Building a ring structure using rotated self-activating rules. The particular

rotation which matches cannot be controlled, and the output structure may
therefore be inaccurate. 237

9.24 Symmetry problems exist when attempting to build a cycle of self-activating
modules. 239

LIST OF FIGURES xv

10.1 With rotation enabled, seemingly-complex architectures with clearly defined
features (in this case corridors and chambers of definite sizes) can be produced
with extremely simple rule sets. The results of two different simulations are
shown in the right, both using the same two rules on the left, plus all rotations
through the Z-axis (effectively 8 rules if fully specified). This Figure also
appears in Section 5.2.4 as Figure 5.4. 251

10.2 The application of a rule rotated to match ‘local’ north. If north is defined by
each agent as the direction along the line of increasing gradient, then rules can
be applied to build structure growing outward from the source of the gradient. 253

10.3 When a stimulating environmental configuration is created out of sequence,
the pathological building behaviour of the stigmergic agent is revealed. Taken
from [157], originally presented in Section 2.3.1 as Figure 2.4. 254

List of Tables

4.1 Comparison between Nest-2.11.1and Nest-3.0 69
4.2 Geometric differences for cubic and hexagonal architectures. The determina-

tion of rotation is explained fully in Sections 4.5.2 and 4.6.1. 69
4.3 Multi-state matching using Bit Arrays . 85
4.4 An example of bit-setting to enable bricks to match against multiple values. 85
4.5 A listing of the 24 valid cubic rotations, by the number of rotations around

each axis. For example, xxy indicates the cube is rotated around the x-axis,
then once again, and then around the y-axis. 87

5.1 The number of post-rules generated from meta-rules in different locations with
various geometries. 138

Chapter 1

Introduction

“[Engineers], in their attempts to design distributed artificial multi-agent sys-

tems (cellular and reactive robots, mobile automata), are facing the problem of

finding simple behavioural algorithms at the individual level so as to produce a

collective performance. The study of collective building processes in social insects

seems to be a path to follow in order to discover new kinds of such distributed

behavioural algorithms.” [156]

1.1 Dial M For Mars

One of the most significant ecological events in the recent history of Earth is not the advent

of global warming, nor the depletion of the ozone layer, but simply the number of people

currently living on the planet itself at any given moment:

“It took from the beginning of time until about 1927 to put the first 2 billion

people on the planet; less than 50 years to add the next 2 billion people (by

1974); and just 25 years to add the next 2 billion (by 1999). In the most recent

40 years, the population doubled.”[37]

As the increase in the human population of our planet continues to accelerate, it is now

virtually certain, without the advent of significant population management, that will be

forced to make homes on other worlds within the Solar System.

1.1 Dial M For Mars 2

It is perhaps with this inevitability in mind, rather than purely the quest for knowledge,

that many scientists and engineers are focused on the exploration of nearby planets which

might be capable of supporting life. Over the last 50 years exploration into space has

changed from a scientific frontier to a nearly common-place event. However, while probes

have been dispatched and reported on most of the significant physical objects in our galactic

neighbourhood, the only object which has been visited by humans over all this time is our

nearest neighbour, the Moon.

1.1.1 At Home in the Universe

While relatively close to the Earth, our celestial partner is not capable of supporting life

without a huge investment of external resources. For instance, to control even the temper-

ature of an installation on the Moon, systems which smooth the fluctuation from −147◦C

in the shade to +100◦C in direct sunlight1 must be developed and installed in whichever

location humans wish to inhabit.

In contrast, Mars maintains a temperature of between −112◦C and −8◦C. While this is

certainly an extreme environment, it is not unlike temperatures found in polar regions on

Earth, and would certainly be far more manageable than the extremes of hot and cold on the

Lunar surface. The presence of water (in the form of ice) confirms Mars as the most likely

candidate for a ‘home away from home’ for any human on the look out for extra-planetary

property investment.

Despite the apparent feasibility of establishing an off-world presence on Mars, the distance

between Mars and the Earth means a trip to Mars will take between 6 and 8 months. It

would be of huge benefit to any such mission if a base of some kind were already present on

the Mars surface, available to house and support the astronauts while they are present on the

planet, and provide supplies for the return journey. It has been suggested[90] that the best

way to achieve this would be dispatching some robotic systems ahead of a manned mission,

which could then assemble the structures and mechanisms required to support human life,

prior to the arrival of any astronauts.

1Comparisions of surface temperature on Earth, Mars and the Moon can be found at
http://www.asi.org/adb/02/05/01/surface-temperature.html

1.1 Dial M For Mars 3

1.1.2 Remote Robotic Construction

Robotic exploration of space is an endeavour marked as often by its failures as it is by its

success. A undisputedly significant characteristic of space exploration which contributes to

this chequered track record is the remoteness of the locations in which these automated

systems must operate. Because these robots are operating at distances which must be

measured in terms of the time it takes light to travel them2, they cannot be controlled

remotely by engineers on Earth. They must accomplish their task fully autonomously.

Furthermore, since these robots are distant from their maintainers, the possibility of a

failure in one or more components must be seriously considered, and measures taken to

ensure that any such failure does not compromise the achievement of the system’s goal.

This fault-tolerance will be of particularly importance if the lives of a number of en-route

astronauts are relying on the successful assembly of their planetary life support mechanism

to survive on arrival.

Finally, the system must be robust in the face of unexpected situations. It is almost

certain that whatever environment the construction system is deployed in, unexpected con-

ditions, environmental configurations or chance events will be encountered, many of which

may not have been specifically considered by the system’s engineers. It is therefore vital that

the robotic agents can adapt their behaviour to accommodate these deviations and continue

to fulfil their objective.

1.1.3 Construction on Mars: A Summary

While the construction of a habitat on Mars is a somewhat futuristic example, similar prob-

lems exist on this planet which share the constraints described above. Often a task must be

accomplished in locations where humans cannot directly intervene. These situations might

be inhospitable, such as the site of nuclear disaster, or in the high-pressure environment of

the deep sea. Other situations may simply be inaccessible, such as the assembly required

on microscopic scales in ‘nanotechnology’[53, 164]. In order to satisfactorily address such a

2Depending on the relative distance between Mars and Earth as a result of their orbits, it can take up to
40 minutes for a radio signal to be sent from Earth to Mars and back.

1.2 The Rise of the Insects 4

problem, any artificial system must exhibit the following traits:

• The system must be capable of operating autonomously, without the instruction (or

supervision, to an extent) of humans.

• It must be robust in the presence of unexpected environmental conditions, or when the

outcomes of its actions lead to unexpected results.

• Finally, it must be fault-tolerant; if some component fails, the goal should not be

automatically compromised.

In the following section, one particular class of solutions based on the observed behaviour

of social insects will be considered as a candidate system which claims to fulfil these important

criteria.

1.2 The Rise of the Insects

Many of the most spectacular achievements seen in nature are witnessed at the level of its

smallest inhabitants. The feats of habitat engineering and coordination performed by social

insects, whose equivalent might require months of planning and consideration by humans,

seem to coalesce almost without effort or even communication between those who are involved

in the construction.

For instance, several species of ants build cone-shaped nests, each over a metre height

and housing hundreds of thousands of workers[87]. The equivalent size of this structure for

a human would be a forty-floor skyscraper, relative to body size. Similarly, bees and social

wasps build intricate nest structures to house and maintain their swarms[95, 94, 17]. These

constructions can house many thousands of swarm members, and supports the gestation and

development of new generations.

1.2.1 Emergence and Collective Intelligence

What is perhaps most surprising is that the coordination between the many individuals

which participate in these construction processes might seem to be invisible to the naked

1.2 The Rise of the Insects 5

eye. There is no ‘foreman’, whose human counterpart would ensure that each task proceeds

in order, referring to a plan of the finished structure when necessary.

Instead, the simple building behaviours of each individual, acting alone, combine to-

gether and result in the construction of a coherent, functional structure. There is no single

intelligence responsible for the coordination of activity required to arrive at this result, but

rather a “collective” or “swarm intelligence”, present only when considering the colony as a

whole. It is also an example of an “emergent behaviour” - while the individual actions of

each insect can be described very simply, when many individuals are working simultaneously

in the same environment, the behaviour of the system as a single entity is seen to be the

construction of a complex structure. This behaviour is said to “emerge” from the individual

actions of each insect. These terms will be discussed further in Chapter 2.

1.2.2 Why Use Swarm Intelligence?

The wealth of examples of emergent solutions in nature, and the success of the ‘swarm’

societies we find in the domain of social insects, is undeniable. However, if such mechanisms

are to be useful in the design of other multiagent systems, this type of system must bring with

it significant benefits. A selection of the potential benefits of employing swarm intelligence

to arbitrary multiagent problems are outlined below.

Simple entities

Given the homogeneous and simple nature of the actors within a biological swarm, artificial

swarm agents should share these characteristics. If each agent is both simple, and identical

to every other agent, the agents are ideal candidates for mass production. Production in

bulk also means that large numbers of agents can be produced relatively cheaply.

Robustness

As Wavish[161] states with regards to the generation of ‘emergent’ or collective behaviour:

“Stable emergent behaviour is valuable both because it can be produced much

1.2 The Rise of the Insects 6

more economically than explicitly programmed behaviour, and because it is typ-

ically very robust.”[161]

While expected situations, environmental conditions, or abnormal behaviour from within an

internal component itself might hinder the performance of a traditional system, or cause it to

fail completely. On the other hand, the emergent behaviours exhibited by swarm intelligence

can often capitalise on variation in the environment:

“Randomness or fluctuations. . . far from being harmful, may in fact greatly

enhance the sytem’s ability to explore new behaviors and find new ‘solutions”’[17]

Built-in Redundancy

Homogeneity allows agents within the system to be interchangeable; no agent is tied by its

specific design to any particular task. A further consequence of this is that to some extent

each agent is also disposable. The lack of specialisation in each agent means that if an agent

were to fail while the system is in operation, its role may be easily filled by any other agent

with the swarm. In other words, if one or more members of the swarm are destroyed or

somehow incapacitated, other members should automatically pick up the slack.

As a contrast, if a component fails in a hierarchical system it must be replaced, and the

operation of all components ‘under’ that which failed make no contribution to the perform-

ance of the rest of the system. Any failed components must be repaired or replaced before

the system can continue to operate properly.

1.2.3 Swarm Intelligence for Autonomous Construction

Each of these characteristics – cheap component agents, redundancy and fault-tolerance –

are features which would be highly valuable in any system, natural or artificial, regardless

of that systems origin or context. It is clear that there is significant motivation for applying

swarm intelligence to engineering problems.

There is now a significant motivation to adapting the swarm behaviours of social insects

towards solving the arbitrary problems which human engineers and designers are faced with.

1.3 The Nest Model of Swarm Construction 7

Figure 1.1: An architecture built by the Nest-2.11.1 software (described fully in Chapter
3).

The parallels between construction in social insects and the remote construction problem

described above are self-evident. As Bonabeau and Theraulaz noted in the quotation at the

head of this chapter: “the problem of finding simple behavioural algorithms at the individual

level so as to produce a collective performance.”[156].

1.3 The Nest Model of Swarm Construction

The model presented by Bonabeau and Theraulaz[158, 156], and implemented with their

Nest-2.11.1 software, is an example of an extremely simple system which is capable of

demonstrating some of the construction behaviour seen in social insects. An example of the

type of structure which can be built using this simple system is shown in Figure 1.1.

The Nest model employs a form of coordination called ‘sematectonic stigmergy’ (see Sec-

tion 2.3.4) to ensure that each agent activities work towards the construction of a single,

coherent structure. The mechanisms underlying this system will be subject of further dis-

1.4 Designing Emergence and Swarm Construction 8

cussion and investigation in the following sections of this thesis.

1.3.1 Nest in Action

During simulation, the Nest system operates as follows. Virtual ‘bee’ agents move within

a discrete representation of space, divided into geometrically-shaped (hexagonal or cubic)

cells. Cells may be empty, or may contain a piece of matter, otherwise known as a brick. A

brick may also have a colour, so that different building materials can be distinguished from

each other by the agents.

At any point in time an agent may occupy a region of the lattice whose local arrangement

of bricks and empty cells corresponds to a pre-determined stimulating configuration. The

agent has access to a list of such configurations, otherwise known as rules. The list of rules is

also called a stigmergic algorithm or stigmergic script (consiting of ‘stigmergic rules’,

or rules which operate using stigmergy; see Section 2.3). If an agent encounters a local

configuration which matches one of the rules within the algorithm, a brick (the colour of

which is also determined by the rule) is placed in the agent’s current location.

1.3.2 Nest – A Candidate for Autonomous Construction

It would appear, given the architecture seen in Figure 1.1, that interesting and potentially-

desirable structure can be created using this simple model. Furthemore, it was shown in

[158, 156] that structures which bear remarkable similarities to biological nests can also be

produced, given the correct set of stigmergic rules. The potential of this system as the basis

of a solution to the practical problems described above must be investigated in detail; this

describes the general aim of the work presented here. The specific questions and goals of

this research are discussed in the following section.

1.4 Designing Emergence and Swarm Construction

When Bonabeau and Theraulaz (hereafter B&T) introduced their Nest model[158] (described

in detail as Chapter 3 of this thesis), the construction complex architectures using only very

1.4 Designing Emergence and Swarm Construction 9

simple agents was clearly demonstrated. The obvious hope inspired by this demonstration

is eventual use of these techniques by engineers and designers to solve problems just like the

Mars construction example described above.

However, despite the demonstrations of complex construction in [158, 156, 22, 19], any

individual wishing to use swarm intelligence techniques to solve their personal construction

problems is left with little more than the notion that it might be possible using the model

B&T proposed.

This therefore becomes the aim of the investigations presented in this thesis. While

B&T’s model is clearly capable of producing interesting structures, the application of their

techniques to novel problems has never been demonstrated:

• Is it possible to use sematectonic stigmergy to build arbitrary structures?

The possibility of applying stigmergic construction to arbitrary construction tasks is use-

ful only if some methodology can be devised which will guide engineers and designers as

they apply the general principles involved in stigmergic construction to their own, unique

requirements:

• If it is possible to use stigmergy for arbitrary tasks, how can it be used? In other

words, what steps must be taken in order to generate a stigmergic algorithm which

will build a given structure?

Finally, if some methodology can be devised to assist in the creation of targeted stigmergic

systems, it would seem natural to attempt to codify those guidelines into and algorithmic

process:

• Can the application of stigmergy to arbitrary construction problems be automated

using some algorithm process, and if so, what are the algorithms required?

These are the questions which have driven the research described in the rest of this work,

and their solution represents the ultimate goal of this investigation in emergent construction.

In addressing these questions, several other questions will also necessarily be encountered:

• What are the limitations, if any, of the Nest model (and the underlying sematectonic

stigmergy which it is built upon)?

1.5 Thesis Outline 10

• If any limitations exist, can they be overcome and if so, how? In other words, where

sematectonic stigmergy is ultimately insufficient to solve a particular problem, what

must be added to the model to enable the creation of an acceptable solution?

The answers to these questions will provide a greater understanding of the capabilities and

suitability of stigmergy as a practical tool.

1.5 Thesis Outline

This section gives an overview of the rest of this thesis. Following this introduction, Chapter

2 provides a more detailed survey of existing related work in other areas, and in particular

the areas of emergent multiagent behaviour and stigmergic systems.

Once the background has been presented, Chapter 3 introduces the Lattice Swarm model

and the Nest-2.11.1 system developed originally by Bonabeau, Theraulaz et al. [158, 156,

22, 19]. The assertions and experimental results obtained using this system are also critically

presented.

In Chapter 4 a new stigmergic simulation system implementation is presented, which

improves upon the original work done by Bonabeau et al. and makes significant strides to

overcoming some of the artificial restrictions present in their system. The architecture and

implementation of the system is described, along with suggestions for further development

and experimentation.

Chapter 5 contains a more detailed critical discussion of the assertions presented in the

original work, with particular emphasis on the the effectiveness of these results as tools

enabling us to exploit stigmergic systems in a practical manner. A new set of tools is

then developed – post-rules – to both frame and attempt to understand the behaviour of

stigmergic simulations. This framework may be used within mechanisms of automatically

exploring the behavioural space of these systems. Finally, the computational limitations of

this approach are discussed.

In the light of such limitations, Chapter 6 approaches the goal of harnessing stigmergic

behaviour from an alternative, ‘top-down’ perspective. The new framework presented in

1.5 Thesis Outline 11

Chapter 5 is exploited to extract stigmergic algorithms from pre-existing structures. A

simple algorithmic process is developed to solve this problem, consisting of two distinct

stages: ordering and state assignment. The generality of this approach is also shown.

A new state assignment algorithm is then presented in Chapter 7 which minimises the

brick state complexity – the number of distinct brick colours – of the extracted algorithm.

Chapter 8 continues this exploration, considering the optimisation of the ordering pro-

cess. Similar problems from the field of combinatorial analysis are discussed, and a genetic

algorithm approach found useful in that field is then applied to the present ordering prob-

lem. The limitations of this process are then presented, and the notions of repetition and

modularity in abstract stigmergic systems are then explored in Chapter 9.

Finally, Chapter 10 considers issues relating to his investigation which are not directly

focused on the practical design of stigmergic algorithms and outlines interesting avenues for

further investigation. Chapter 11 concludes this thesis by reiterating the achievements made

within this study, and providing answers where possible the the questions presented above.

Chapter 2

Related Work

The work presented in this thesis takes inspiration from wide and varied fields of research.

In this section, these links are highlighted along with significant related research which has

contributed to the current understanding of stigmergic and emergent multiagent systems.

2.1 Emergence

Scholarly consideration of emergence can be traced as far back as Aristotle’s Metaphysica,

where it was noted that “the whole [may be] more than the sum of its parts”. In more recent

years, the study of this type of phenomenon, where something apparently-new emerges from

collection of component parts (a system) has increased dramatically. The fascination with

emergence is in part due to the sheer quantity and variety of examples of emergent systems

identifiable to the casual observer.

These examples range from physical systems[13, 86], to chemical interactions such as

the famous Belousov-Zhabotinsky reaction[143], to the production of biological structure

and patterning[133], extending up to the behaviour of human social structures[38]; from

structure within turbulence[153], to the social coordination within ant-colonies[29, 17, 87],

to the appearance of behaviours within the global economy. The demonstrated existence of

emergence is pervasive and seemingly inescapable.

Perhaps even more so than the ‘intelligence’ in Artificial Intelligence, ’emergence’ is the

subject of intense scrutiny and debate, in fields ranging from social science to philosophy.

2.1 Emergence 13

Only a flavour of the depth of this discourse can be given here, in so much as it is relevant to

the proceedings which follow thereafter; whenever possible the reader is directed to sources

of further information of far greater depth.

2.1.1 Defining Emergence

Many attempts have been made to define ‘emergence’. While attempts to precisely define

the term remain the subject of some debate (see Section 2.1.3 below), many more general

formulations have been posited. Baranger suggests that

“Emergence happens when you switch the focus of attention from one scale

to the coarser scale above it.”[10]

In his book entitled ‘Emergence’, Holland’s definition is presented in the form of a constraint:

“The [emergent] behavior of the overall system cannot be obtained by sum-

ming the behaviors of its constituent parts.”[85]

Emergence has also been characterised by the requirement for new descriptive categories[149,

150] or vocabularies[161] to describe the behaviour of the system, which were not necessary

to describe the behaviour of the individual components:

“. . . a designer has a vocabulary of behaviour descriptions V 1 with which

the behaviour of a system can be described, and a much smaller subset V 2

which is actually used in the written texts describing and ultimately generating

the behaviour of the system. Emergent behaviour is that behaviour which is

produced by behaviour describable by V 2, but which is itself not describable by

V 2, although it is describable by V 1.”[161]

Crutchfield[41] asserts that

“A feature emerges when the system puts some effort into creating it.”

All these encapsulate the notion of some interesting novel feature which was either not

previously present, or is unexpected within the given context. However, like the concept of

‘intelligence’, there is as yet no universally acceptable definition of emergence, nor a test to

indicate the presence or lack of any emergent phenomena within a system.

2.1 Emergence 14

Classification of Definitions

In the absence of such a general definition, a number of classifications and approaches

currently used to understand emergence and emergent phenomena have been outlined.

Cariani[30] outlines three distinct approaches to the generation and study of emergence:

Computational Emergence views global emergent properties as arising solely from the

underlying deterministic computational interactions. Perhaps the most popular demon-

stration of computational emergence appears within the cellular automata investigated

within the field of artificial life.

Thermodynamic Emergence explains the global behaviour of a system in terms of con-

cepts from dynamical systems, such as attractors, generators and autocatalytic cycles.

Emergence-relative-to-a-model recognises the role of the observer within the emergence-

exhibiting system as a whole. In this approach, emergent behaviour is seen as a devi-

ation in behaviour from that predicted by the observer’s internal model of the system,

thus forcing the observer to modify their model in order to accommodate the new

behaviour(s). The relationships between the system, the observer and the measur-

ing mechanisms used by the observer determine what (if any) emergent behaviour is

produced.

Types of Emergence

In contrast to these approaches to studying and understanding emergence, Castelfranchi[32]

outlines a number of different types of emergence. The first, diachronic emergence, is claimed

to occur when new behaviours or properties appear over time or through some evolutionary

mechanism. Descriptive emergence, on the other hand, occurs when a complex system of

many interacting components can be described concisely at the level of the system as a

whole. This description may involve new concepts and ideas which were not represented at

the level of the individual components of the system, and because of this features of the

system described by these new terms can be labelled as emergent.

2.1 Emergence 15

Castelfranchi then outlines a number of other forms of emergence, including cognitive

emergence, where some implicit knowledge, rule or fact becomes explicit within a mind, and

gestalt emergence where the interaction between individual elements occurs only within the

mind of the observer (such as the emergent ‘structure’ of a constellation of stars).

Subjectivity

Castelfranchi[32] also highlights one of the major problems encountered when attempting to

classify emergent phenomena – the subjectivity of emergence when defined relative to the

observer. This problem exists because such a definition of emergence is dependent on the

observer to detect and label candidate properties as emergent. Different observers may have

different internal models[8, 85], and thus while one observer may declare a given phenomenon

as emergent, a second observer may not.

This discrepancy may occur because of a relative deficiency in the cognitive or modelling

abilities of the first observer, whereas to the more-enlightened second observer, the emergent

behaviour is ‘obvious’ and was already apparent within their internal model of the system.

The very act of modelling may induce such a difference, as it forces the modeller to choose

which aspects of the system are relevant and which can be regarded as ‘noise’[42]. Different

modellers will make different choices, and may miss the crucial measurement which indicates

emergence[124].

Cariani[30] acknowledges this by suggesting that the observer/measurer must be con-

sidered a part of the system itself. The relationship between an observer’s ability to under-

stand and explain (i.e. model) is also a common theme[8, 44, 42, 118].

2.1.2 Second-Order Emergence

While most study of emergence takes place using systems of extremely simple compon-

ents, when more complex (and even cognitive) components (agents) are present, a second

type of emergence becomes increasingly important – so-called “second-order emergence”[72].

Second-order emergence implies that while the global (emergent) properties of a system are

generated by the interactions of the individual components, the components somehow be-

2.1 Emergence 16

come ‘aware’ of these properties and their individual behaviours are as a result influenced

by them.

This downward causal link is of particular importance to social science, as the organ-

isations that an individual exists within influence the behaviour of that individual. This

is similar to the concept of “social functions”[32] – where the global emergent behaviour

reinforces the micro-behaviours which generated it. It is also reflected in the simulated ex-

periments of Wavish[161] (wherein high-level behaviours are defined in terms of emergent

behaviours as detected by the agent itself).

Both Castelfranchi and Gilbert argue that some amount of sophistication within the

elements of the system is required to produce such effects. However, it seems unclear why this

is necessary – given that the system itself forms the environment with which each component

interacts, changes in this environment will necessarily affect the way the component behaves,

regardless of its internal complexity. While the ‘macro-micro’ link may be more apparent in

systems containing cognitive agents, it should not be exclusive to them.

2.1.3 Strong and Weak Emergence

Bedau proposes that in order to select a precise and useful notion of emergence, definitions

should be considered ‘strong’, or ‘weak’, paralleling the enduring ‘strong’ versus ‘weak’ de-

bate surrounding classical artificial intelligence1. The distinction between weak and strong

emergence is considered below.

Strong Emergence

The definition of ‘strong’ emergence given by Bedau is based on a conception of emergence

defended by O’Conner[126]. Reformatted for clarity, it states:

“Property P is an emergent property of a (mereologically-complex2) object

O iff:

1. P supervenes on properties of the parts of O,

1“. . . according to strong AI, the computer is not merely a tool in the study of the mind; rather, the
appropriately programmed computer really is a mind.”[144]

2An object composed of several parts.

2.1 Emergence 17

2. P is not had by any of the object’s parts,

3. P is distinct from any structural property, and

4. P has a direct (“downward”) determinative influence on the pattern of be-

haviour involving O’s parts.”[13]

The key aspect of ’strong’ emergence is shared in common with “second-order” emergence

as described above – the emergent behaviour exerts a downward influence onto the behaviours

of a system’s component parts. What is made explicit in this definition of ‘strong’ emergence,

which is either missing or implicit in second-order emergence[72], is the supervenience3

of the emergent property from the activities of the components of the system. This

requirement causes some distress:

“[Strong emergence] is uncomfortably like magic. How does an irreducible

but supervenient downward causal power arise, since by definition it cannot be

due to the aggregation of the micro-level potentialities?”[13]

The strong separation between the emergent property, and the component activities of the

system which must be generating that property, seems to defy logic.

Weak Emergence

Bedau counters strong emergence with a definition of ‘weak’ emergence, as follows:

“Macrostate P of [system] S with microdynamic D is weakly emergent iff P

can be derived from D and S’s external conditions but only by simulation.”[13]

The external conditions referred to in this definition may be simply the initial state, in the

case of a deterministic system. Most importantly, this ‘weak emergence’ definition carries

with it the notion of unpredictability, a commonly encountered aspect of complex systems

and chaos theory[43]. This conceptualisation of emergence also fits well with those provide

by Holland (“Emergence occurs in systems that are generated.”[85] p.225), Crutchfield (“A

feature emerges when the system puts some effort into creating it”[41]) and Darley (“A true

emergent phenomenon is one for which the optimal means of prediction is simulation.”[44]).

3The appearance of something additional or extraneous.

2.1 Emergence 18

Darley[44] illustrates this further with his definition of emergence:

“Let s(n) be the amount of computation required to simulate a system [n]. . .

Our deeper level of understanding of the symmetries of the system. . . has

allowed us to perform a creative analysis and deduce the future state whilst, we

hope, circumventing most of the previous-required computation. Let u(n) be the

amount of computation required to arrive at the result by this method. [If:]

u(n) < s(n)⇒ the system is non-emergent.

u(n) ≥ s(n)⇒ the system is emergent.”[44]

Computational Irreducibility

“The system making the prediction must be able to outrun the system is is trying to predict.

If the system is capable of universal computation, it cannot be outrun.”[14]

The reasoning for this statement is as follows: if a system is capable of universal com-

putation, then there are many questions regarding the behaviour of the system that are

undecidable[159, 166]. It is therefore not possible to ‘outrun’ such a system, since a system’s

behaviour may be infinite.

For example, the simple cellular automata (CA) system studied in depth by Wolfram[165,

166] – ‘Rule 30’ – generates random structure when simulated, without falling into any cycle

of behaviour, indefinitely. It is not possible to determine the configuration the the CA at

time n without considering the system’s state at each time period before n. In other words,

it is not possible to ‘short-cut’ the behaviour of this system.

2.1.4 Detecting and Measuring Emergence

Despite the absence of a clear definition of emergence, a number of methods for detect-

ing it have been proposed. The nature of these methods varies from statistical testing of

various aspects of the system[167, 130], to attempting to map the dynamical envelope of a

simulation[155], to openly subjective tests of ‘surprise’ in the observer[139]. Unfortunately,

each of these methods has significant problems.

Nicolis demonstrates that emergent behaviour is

2.1 Emergence 19

“associated with the spontaneous emergence of lang-range spatial and/or tem-

poral coherence among the variables of the (organised) system.”[124]

Consequently, choosing the appropriate parameters of a system to model and measure is

vitally important when trying to demonstrate – and detect – emergent phenomena[1]. Stat-

istical methods of detecting emergence rely on appropriate choices of parameters, and these

choices are typically made by the designer/observer. As Forrest notes:

“[Emergence is] interpreted by the perceptual system of the person running

the experiment. Thus, when conducting a cellular automaton experiment, re-

searchers typically rely on graphics-based simulations to reveal the phenomena

of interest.”[61], p.3

Purely subjective tests of emergence such as the ‘Design, Observation, Surprise!’ method

proposed in [139] suffer the same failings as subjective definitions of emergence. Differences

in the abilities and choices of observers yield differing results, and improvements of the

understanding of systems threaten any claimed emergence with ‘demotion’[72]. It seems

there is great difficultly in removing the requirement for an active observer from any means

of measuring emergent behaviour. The interesting relationship between the behaviour of a

system and and observer is presented in [102]:

“In other words, the computational complexity [of a system] cannot be an

intrinsic property of a physical system: it emerges from the interaction of a

system state dynamics and measurement as established by an observer.”

This relationship can be simply characterised by the common conundrum “if a tree falls

in the woods, and no person is near, does it make a sound?”, whose counterpart in the study

of complex systems might be “if a system elicits some behaviour and no person measures is,

is that behaviour still emergent?”. The notion of ‘sound’ describes an experience produced

in an observer who is measuring, biologically, changes in air pressure. Similarly, an emergent

behaviour may only exist when a particular observable aspect of the system is measured.

2.1 Emergence 20

2.1.5 Emergence and Self-Organisation

Systems which exhibit ‘emergent properties’ are often also characterised with the term self-

organised. A concise definition of what constitutes self-organisation is given by Camazine

et al.:

“Self organization is a process in which pattern at the global level of a system

emerges solely from numerous interactions among the lower-level components

of the system. Moreover, the rules specifying interactions among the system’s

components are executed using only local information, without reference to the

global pattern.”[29]

There seems little to differentiate this definition from a typical definition of ‘emergence’.

However, the perspective associated with self-organisation draws from a tradition of dy-

namical systems analysis[125], and as such draws on terminology from that field. The key

characteristics which should be identifiable in a self-organising systems are[29, 17]:

Positive Feedback – as the individual components produce some pattern, other compon-

ents respond to its presence and cause the original pattern to be reinforced.

Negative Feedback – other aspects of a system might cause the structure or behaviour to

disperse. The presence of both positive and negative feedback results in semi-stable

behaviour or structure.

Feedback leads to Amplification of Fluctuations – often the behaviour of a system

is initially random, but over time certain random fluctations are reinforced (using

positive feedback) whilst others are discarded (by negative feedback). In this manner,

the system tends towards focusing its activity on a smaller number of behaviours or

structures.

Multistable – there are typically a number of stable states for a self-organising system.

Changes in the environment or other measurable parameters of the system may, if

large enough, push the system from one stable state to another. The appearance of a

qualitative change in the behaviour of a system when some measurable parameter of

2.1 Emergence 21

the system is modified is termed a bifurcation, and particularly stable states are known

as basins of attraction.

Local Information Flow – since the organising behaviour of the system is emergent, it

must be a result of the interactions of the components within that system. As stated

in [29] and above, in self-organising systems these interactions are typically local.

A Simple Example of Self-Organisation

Most examples of self-organised systems are taken from nature, such as pattern-formation

on shells[119], or the coordination of social insects during construction[17, 28, 156, 94, 132,

76] or foraging[58, 64, 63]. For instance, the formation of paths by ants[58] (or ant-like

robots[149, 54]; see below) features the creation of a self-organising path structure through

the deposit of pheromones (chemical markers detectable by other individuals). Initially,

individuals disperse through the environment, but once a food source has been located, the

returning insect deposits a trail of pheromone back towards the nest. When other colony

members encounter this trail (local interactions, via the environment; see stigmergy below),

they follow it towards the location of the food, and strengthen the path markers by depositing

further pheromone (positive feedback, amplification).

It is possible that many paths may be formed. However, shorter paths (those which can be

traversed in the least time) will be reinforced more often, leaving longer paths unattended.

While the pheromone trail on these longer routes is not being strengthened by continual

deposits, it is also evaporating, and eventually long routes will disappear (negative feedback).

Without direction, the colony has organised itself and selects the nearest food source for

exploitation.

Further Reading

Self-organisation in biological and biologically-inspired systems is discussed in great depth

in [29], to which the interested reader is directed for further examples and analysis.

2.1 Emergence 22

2.1.6 Emergence in Abstract Systems

In an attempt to attack the ‘problem’ of emergence in a pure form, without contending with

issues such as physical interactions and environmental modelling, a great deal of work has

been undertaken which studies the emergent behaviour of very simple, abstract systems.

Boolean Networks and Cellular Automata

For example, Kauffman[100] and Solé[146, 147] both examine the emergent behaviour in

boolean and multi-state networks. A ‘boolean network’, in this context, is simple a collection

of boolean ‘gates’ which operate on the output value of other gates within the same network.

It was found that while some networks (i.e. the values held by the gates) rapidly converged

to a static state, other networks seemed to oscillate and produce patterns of ‘behaviour’.

Wolfram [166, 165] and Langton[110, 109]’s investigations into the behaviours of simple,

abstract systems show similar complex behaviour exhibited by simple, one-dimensional cel-

lular automata (CA), whose low-level behaviour can be specified even more simply that

Kauffman’s networks. Patterns of behaviour within CAs are also often intuitively recognis-

able, given the spatial, graphic nature which is typically used to display them. Adamatzky

and Holland[2] demonstrate the emergent formation of patterns in ‘excitable media’ using

cellular automata. Adamatzky and Holland then [3], demonstrate similar pattern forma-

tion using models based on agents rather than passive cells. This type of emergence and

the relationship between agents and excitable media have also been discussed recently by

Bonabeau[18].

Frameworks and Relationships Between Abstract Emergent Systems

In his book entitled ‘Emergence’[85], John Holland proposed constrained generative pro-

ceedures (CGP), simple production-rule systems for investigating the nature of emergence.

Forrest [60] demonstrates emergent behaviour in the classifier systems, which are very close

to the CGPs Holland describes. Forrest also describes a mapping between classifier systems

and simpler Boolean networks, demonstrating the equivalence between these two simple state

machines.

2.1 Emergence 23

"Fear" "Aggression"

Light Sensor

Motor

Figure 2.1: Two ‘Braitenberg Vehicles’[25]. The speed of each ‘motor’ is directly propor-
tional to the amount of light detected by the connected ‘sensor’.

Earlier work by this author[1] has similarly compared multi-state networks (networks

with gates whose set of output states is larger than two) with multiagent systems. Through

the comparison between forms of these two systems, a mapping from abstract multiagent

systems to multi-state networks has been demonstrated. It was also shown that the converse

mapping is not possible

Emergence in Simple Agent Systems

Emergence has also been shown in systems with extremely simple agents. For instance,

Channon and Damper[33], Ray[135] and Rucker[140] all demonstrate emergent behaviour in

populations of abstract ‘machine-code’ organisms, whose intelligence amounts to little more

than a few instructions. The Tierra simulation[135] in particular is a fascinating example

of a ‘digital ecology’, in which organisms compete for computing resources of a computer

system directly, rather than a simulation of a physical, tangible environment.

In contrast to the stark, almost-alien nature of Tierra agents, Braitenberg[25] describes

a set of idealised, imaginary robotic animals, and demonstrates a wide variety of emergent

behaviours – perceived by (naive) observers as ‘aggression’, ‘love’ and even ‘optimism’ – by

making small modifications to the mediation between sensory information motor action with

these ‘Vehicles’. Internally, these creatures are nothing more than simple variations on the

connections between primitive ‘sensors’ and ‘motors’, as shown in Figure 2.1. The speed

of each ‘motor’ is directly proportional to the amount of light detected by the connected

‘sensor’.

2.1 Emergence 24

When the two vehicles shown are placed in an environment with an undirected light

source, the first will initially move towards, and then rapidly turn away from the light. This

behaviour is often perceived by observers (see Section 2.1.1 above) as “fear” (or “run-away”).

The second vehicle behaves similarly at a distance from the light source, but close proximity

causes the vehicle to move with increasing speed directly toward the stimulus: “aggression”

(or “chase”). These simple agents clearly demonstrate the structured behaviours of light

avoidance and light following, but there is no specification of such behaviour within the ‘im-

plementation’ (Braitenberg conceived his ‘vehicles’ as thought-experiments). Furthermore,

the appearance of high-level motives and ‘emotions’ can only be emergent and subjective to

the observer, as there is certainly no specification of such behaviour within the specification

of the agents themselves.

The Nest Model

The final example of emergent, abstract agent systems presented here is the Nest system

developed by Bonabeau and Theraulaz [158, 156], which will become the basis for the research

presented here. As such, the Nest model is described below, and again at length in the

following chapter. While this system is based on existing biological systems, and can be

discussed using significant physical metaphors (pheromones, building material, excavation

and construction), the core of the system is very similar to the classifier systems or cellular

automata described above. When stripped of concepts such as ”agent” and ”brick”, the

resulting model is a lattice network of cells which change state to form patterns within the

spatial representation of the lattice, similar to cellular automata4.

The Nest model is a rare example of abstract simplicity combined with a grounding

in real physical systems[158, 156, 17, 29]. While it may be far from trivial to determine

the practical advantages of a clearer understanding of cellular automata[166], the insights

gained through analysis of this system will at least be applicable to physical (i.e. robotic)

implementations of this emergent multiagent system.

4While the Nest model can appear similar to cellular automata when abstracted from its biological
context, only a single site within the lattice is active at any single time. This would be classed a ‘mobile
automaton’ according to Wolfram[166], or an ‘asynchronous cellular automata’ (see Section 3.6.2).

2.2 Emergent Multiagent Systems: Swarm Intelligence 25

2.2 Emergent Multiagent Systems: Swarm Intelligence

While many examples of emergence are present in the most simple systems (such as cellular

automata[166, 165] described above), emergent behaviour has also been exploited within

the fields of multiagent systems and robotics. Within this context, the active entities are

typically autonomous agents situated within either the real environment (in the case of

robotics), or in in a simulated environment which mimics some or many aspects of physical

reality.

The increased interest in emergent, collective behaviour as a flexible means of coordinat-

ing group activity is reminiscent of the introduction of behaviour-based robotics[26, 27] as a

control mechanism for individual agents. These approaches are highly complementary, each

relying on the specification of simple sub-units of activity, and relying on the interactions

between these units and the resulting system output to provide the behaviour desired.

2.2.1 Swarm Intelligence

The most prevalent demonstrations of emergence in multiagent systems are currently limited

to the reproduction of collective behaviours seen in nature, and in particular within the world

of social insects. Several of the most prominent of these examples of emergent multiagent

behaviour are discussed below. Additionally, excellent collections by Bonabeau et al.[17],

Camazine et. al[29] and a survey by Steels[150] which discuss these systems and others in

greater depth are also available to the interested reader.

2.2.2 Foraging

One of the most often cited demonstrations of emergent behaviour in multiagent systems is

the ‘Mars Explorer’ system devised by Steels[149]. The scene is set:

“The objective is to explore a distant planet, more concretely to collect

samples of a particular type of rock. The location of the rock samples is un-

known in advance but they are typically clustered in certain spots.”[149]

2.2 Emergent Multiagent Systems: Swarm Intelligence 26

Multiple agents must work together in an unknown environment, gathering these ‘rock

samples’ in an efficient manner. Because the system is located on a remote planet, it must

operate entirely autonomously; the distances are so vast that remote control is limited by

the speed of signal transmission itself.

Path Formation

In Steels’s simulated system, the swarm of collecting robots wanders randomly around the

environment. If an agent detects a rock sample (this could equally be anything which must be

collected) the agent returns to ‘base’ by following the increasing gradient of a homing signal.

As the agent returns to base, it deposits ‘crumbs’, two at a time, along the path it takes to

the base. Once an agent returns to base, it drops the sample and begins random-wandering

again.

If an agent encounters a trail of crumbs, it will follow the trail, collecting a single crumb

from each pair until it encounters the cluster of samples. After picking one up, the agent

then returns to base, depositing pairs of crumbs in a similar manner to the agent which first

discovered the cluster. In this manner, the path is reinforced whilst there remain samples to

be collected, but once the samples cluster is fully eroded, the path will similarly be collected

by agents following in anticipation of a sample. The path maintained by ‘Mars Explorers’

agents is an example of a dissipative structure[125], in which both positive feedback (agents

reinforcing the path as they return with samples) and negative feedback (agents causing the

path to ‘dissipate’ as they follow the path in search of samples) can be seen.

In experiments[149, 150], swarms of agents which used path-formation techniques collec-

ted all samples within the environment within a much shorter space of time that systems

which employed only random wandering. This single model of foraging[58] contains many of

the hallmark characteristics of emergent behaviour[29, 17, 150].

Agent Chain Formation

This foraging technique has been extended by Drogoul[54] by allowing agents to notify nearby

agents if they are carrying samples, and allowing the transfer of collected material from one

2.2 Emergent Multiagent Systems: Swarm Intelligence 27

agent to another. Drogoul’s algorithm allows the agents to form chains, passing samples

towards the base. This chain structure is far faster to adapt to changing environmental

conditions, most notably the clearing of a cluster of samples, and therefore affords even

greater increases in system efficiency.

2.2.3 Cooperative Transport

Ants can often be seen transporting prey larger than any of the individuals carrying it would

be able to lift alone[63, 64, 106, 87]. To achieve this, multiple ants must coordinate their

separate movements such that they can mutually transport the item, whilst simultaneously

negotiating obstacles and soliciting further assistance if necessary.

This task has become a popular challenge in the field of robotics, and the design of

of distributed algorithms to control a group of robots performing this task has become a

‘benchmark for swarm robotics’[16]. Currently, this task is realised as box-pushing by two or

more robots. Kube et al.[104, 106, 105, 107] have developed robotic swarm systems in which

individual agents effectively coordinate their movements to push boxes towards a goal.

Related recent work by Parker et al.[131] takes inspiration from the ‘blind-bulldozing’

behaviour observed in some species of ant, and demonstrates cooperative movement of en-

vironmental material by a group of robots in a manner complementary to Steels[149] or

the construction systems[158, 156, 19] which form the foundation for the original research

presented here.

2.2.4 Clustering and Sorting

The techniques employed by Parker et al.[131] are similar to those required to achieve sorting

and clustering, another renowned example of collective behaviour. Sorting and clustering

behaviour is seen in ants[64, 46] in the form of the aggregation of corpses into ‘cemetaries’

and the sorting of brood (eggs, larvae, pupae, etc.).

Deneubourg[46] proposed a general model which is capable of reproducing both these

behaviours. Essentially, agents wander randomly through the environment, and if an item

is encountered it may be picked up. The probability of an agent picking up a given item is

2.2 Emergent Multiagent Systems: Swarm Intelligence 28

inversely proportional to the number of other items in the neighbourhood. Agents carrying

items will deposit their items using a roughly-opposite probability; that is, if an agent

encounters a high density of items, and is carrying one at that time, it is likely to deposit

the item it is carrying at this position. As will be seen be seen below, sorting can be achieved

if the behaviour of an agent depends on the local density a type of object, and the type of

the object currently being carried.

Robotic Clustering

This mechanism has been implemented in several robotic systems. Beckers et al.[12, 46]

implemented a very simple collection of robotic agents which push small pucks around using

a C-shaped scoop connected to a lever. The lever rests on a switch which is triggered when

the resistance (due to friction with the ground) of the items trapped in the scoop reaches a

given threshold. In this manner, the agent can be tuned to detect when it encounters several

pucks together in the environment, since a collection of several pucks will exhibit higher

resistance than a single puck. The robot is also equipped with the ability to detect collision

with obstacles in the environment.

The robots may only exhibit one of three behaviours at any time:

1. If the trigger is not activated, the robot moves forward in a straight line.

2. If an obstacle is detected, it turns away at a randomly-selected angle, and returns to

behaviour 1.

3. If the switch is triggered (indicating the robot has encountered a cluster of pucks in

the environment) the robot reverses briefly, rotates by a random amount, and returns

to behaviour 1.

Once running the robots move around randomly. If a puck is encountered, it will be

trapped within the scoop as the robot moves forward (behaviour 1). Once several pucks

have been encountered and present resistance to the scoop, the lever is pushed back and

the switch triggered, activating behaviour 3. The robot backs away, leaving the collection of

pucks where they are, and continues collecting in a different direction.

2.2 Emergent Multiagent Systems: Swarm Intelligence 29

If any agent then encounters this small cluster, it will push any pucks it is carrying into

contact with the cluster, detect the increased resistance of a cluster, reverse and continue

away. By reversing briefly in step three above, the robot ensures that its random turn does

not drag any pucks away from the structure in its scoop.

As the system proceeds, multiple clusters will be aggregated by the random pushing

behaviour of the robots. However, if a robot approaches an existing cluster at a tangent, its

scoop may drag a small number of pucks away from the cluster. These pucks will stay with

the robot until it encounters another cluster. Given enough time smaller clusters will be

eroded by this ‘puck theft’ at their periphery and the a single, larger cluster will be created.

Sorting

The behavioural model described above only demonstrates the clustering of objects within

the environment. If the collecting probability is increased (and the complementary dropping

probability decreased) where other objects in the neighbourhood are of a different type,

such systems also exhibit sorting behaviour – the resulting environment will contain piles of

distinct object types.

Holland and Melhuish[86] have implemented a similar system to the clustering robots

described above[46, 12]. This robotic swarm uses two different types of item (in this case

black and yellow frisbee discs). By enabling the robots to distinguish between types of item

in the environment, the swarm can cluster certain types of disc together, or in other words,

sort the objects within the environment. This is illustrated clearly in the time-lapsed images

shown in Figure 2.2, and the sorting behaviour can be seen most clearly in the final image.

By modifying the conditions in which an object will be picked up to depend on the local

density of that type of object, the clustering behaviour described about can be adapted to

produce a form of sorting. If an object is encountered and these is a high density of similar

objects, if will be ignored. However, if there is a high density of dissimilar objects, then this

‘stray’ should be collected by the agent.

Likewise, if an agent is carrying an object of a particular type, and encounters a high

density of objects of the same time, it should deposit its object in that location. If the

2.2 Emergent Multiagent Systems: Swarm Intelligence 30

0hrs

approx. 7hrs approx. 8hrs

approx. 2hrs

Improved Sorting

Figure 2.2: A robotic sorting implementation, using two colours of frisbee. Initially, several
groups of objects are formed. Eventually, one cluster is eroded and a single
cluster is formed. The lower image depicts the system after adjustment to more
clearly demonstrate annular sorting; the black discs have been clustered in a
central pile, and the yellow discs evenly spread in a surrounding ‘aura’.

2.2 Emergent Multiagent Systems: Swarm Intelligence 31

objects within the environment are of a different type, it should simply avoid this cluster

and continue moving through the environment.

Other Applications of Clustering

The techniques described above have also been applied to abstract optimisation problems

such as graph partitioning[113] and exploratory data analysis[108]. Further details of the

more-abstract applications of this technique can be found in [17].

2.2.5 Construction and Coordinated Assembly

Perhaps the most striking example of coordinated activity in social insects is the construction

of nest structure, which support the life cycle of often vast numbers of individuals[17, 64, 87].

The disparate actions of multitudes of individuals combine to produce complex a structure

serving many functions, from housing the colony to protecting young to storing food supplies.

The Nest system implemented by Bonabeau and Theraulaz[158, 156, 22, 19, 29] (men-

tioned previously in Section 2.1.6) is the most prominent simulation of emergent swarm

construction, where ‘virtual wasps’ interact to produce complex arrangements of bricks.

Their model relies upon the segmentation of space into a lattice of discrete cells, which may

be empty, or may contain a piece of matter, otherwise known as a brick. Agents move around

within the lattice examining local arrangements of cells (‘neighbourhoods’) and comparing

them against an internal set of stimulating configurations which might indicate the place-

ment of a brick in the current location. Multiple types of brick (or ‘colours’, for simplicity

of interpretation) can be placed, and recognised by agents during simulation.

Bonabeau, Theraulaz et al.[156, 22, 19] have shown that certain collections of these build-

ing rules will produce structures in space which appear complex and would typically require

a great deal of coordination to produce using traditional planning mechanisms. Furthermore,

within this simple framework it is possible to derive rule sets which will produce structures

similar to those seen in nature, such as wasp nests.

While the Nest model is by far the most often-cited investigation into swarm construction,

other notable work involving construction using simple agents includes investigations by

2.2 Emergent Multiagent Systems: Swarm Intelligence 32

Karsai[95, 94, 96, 99, 97, 98], Mason[115], Parker[131], Coates[36] and Bowyer[23].

Self-Assembly

Construction by a swarm of agents shares much in common with the concept of self-assembly.

In both, simple components arrange material within space, constrained by limited individual

cognitive and perceptual abilities. The significant difference in the case of self-assembly is

that the active components (the agents) and the material of construction are one and the

same. Self-assembly is seen within insect colonies, most notably the formation of bridges by

ants, linking their bodies together to bridge gaps[64, 17].

Self-assembly is of particular interest to the new areas of micro-mechanical compon-

ents and ‘nanotechnology’[53]. At such small scales, it becomes increasingly impractical

to build machinery and artefacts using external forces. If structures could be caused to

assemble themselves dynamically, in a manner similar to the bonding of molecules into

compounds[164], the construction of nano-scale structures may become feasible.

Self-assembly can also be useful at macroscopic scales, and it has been demonstrated

in a number of robotic systems[65]. Melhuish et al[120] demonstrate the formation of bar-

riers by ant-like robots using stigmergic communication. Pamecha et al.[128], Murata et

al.[122], Hosokawa et al.[89] and Yoshida et al.[170] demonstrate several mechanisms for

self-assembling and self-reconfiguring robotic systems.

The recent work of Jones[92] on abstract self-assembling systems is very closely related

to the Nest systems devised by Bonabeau and Theraulaz[158, 156]. The agents (or ‘modules’

in this case) arrange themselves within a regular lattice, and rules of construction based on

stimulating local configurations are used to determine which locations around the structure

modules can be placed as the simulation progresses.

2.2.6 Ant Colony Optimisation

Ants working together form trails to food sources. By use of pheromone deposits, the ant

colony as a whole establishes the shortest (fastest) route between the nest and the location

of the food.[87, 64, 17, 11, 163].

2.2 Emergent Multiagent Systems: Swarm Intelligence 33

The trail-making behaviour of ants foraging for food has inspired one particularly notable

application of swarm intelligence. The ability of a distributed colony of simple individuals

to find optimal solutions to problems involving a ‘journey’ has obvious applications in the

field of combinatorial optimisation[16]. Other problems to which the ant metaphor lends

itself well include the dynamic optimisation of packet transmission in telecommunications

networks. These examples of Ant Colony Optimisation (ACO) will be discussed briefly

below.

The Travelling Ant

The ‘travelling salesman’ problem (TSP)[93, 112] is a classic NP-complete combinatorial

problem[71]: given a finite number of ‘cities’ with some pre-determined cost of travelling

between each pair, we must find the cheapest route which allows the salesman to visit all

cities and return to his starting point. If links exist between all cities, then the total number

of tours is given by (n−1)!
2

, where n is the number of cities the salesman must visit. Further

aspects of the TSP will become relevant to the research presented later in this thesis (see

Section 8.2).

The similarities between this abstract shortest-path problem and the pathfinding be-

haviour of ant colonies within the natural world are self-evident. As a result, algorithms

inspired by the behaviour of ants, and in particular the virtualisation of mechanisms which

they use to optimise paths (pheromones) have enabled the development of high-performance

ant-based routines for solving TSP problems[49, 48].

Network Routing with Ants

An extremely practical application of ACO appears in the form of telecommunications

routing[20, 141, 69]. The problem within this domain is to maximise the routing performance

of a (possibly heterogenous) network under a constantly varying traffic load. This problem

differentiates itself from the TSP above in that the structure of the network (both in terms

of connections, and the cost of transmission over those links) is dynamic, and therefore may

be subject to change while the system is operating.

2.2 Emergent Multiagent Systems: Swarm Intelligence 34

Schoonderwoerd et al.[141] developed a system named ABC (ant-based control) which

models the routing behaviour of a typical telephone network. In this domain, communication

between nodes is achieved by circuit-switching (rather than packet-switching, see below).

‘Virtual ants’ are periodically sent from a random node to a random destination node within

the network, depositing virtual pheromone along each link in that journey. The amount

‘deposited’ at each node is inversely proportional to the amount of time the ant spent waiting

in the network to reach that node. In this way, nodes which are congested will have little

pheromone deposited, whilst nodes which have spare capacity will receive stronger deposits.

Using this mechanism, the routing tables for each node can be updated to determine,

dynamically, which nodes in the network have the capacity to support new connections, and

which are congested and should not be used in routing at that time. In comparisons with

traditional routing algorithms, the ABC system has been shown to yield significantly superior

performance[141, 17], especially when the load on the network is varying significantly.

Modern computer networks (such as the Internet, for example) employ packet-switching

rather than circuit-switching in order to establish communications between two nodes. Di

Caro and Dorigo’s AntNet [69, 68] have adapted the ‘virtual ant’ mechanism in ABC for use

in both types of network in the new system AntNet. When compared against algorithms

currently used to route traffic through the internet, AntNet ’s performances was shown to be

at least as good as (and often significantly better than[68, 17]) other algorithms.

Summary

It is clear that the behaviour of ants can not only be the inspiration for novel solutions

to abstract combinatorial optimisation problems[49, 48], but also be applied in practical

situations whilst yielding excellent performance over traditional distributed optimisation

methods[51, 69, 68, 141].

ACO along with many additional applications of swarm optimisation are discussed in

detail by Di Caro and Dorigo in [69], and Bonabeau, Dorigo and Theraulaz in [17]. The reader

is directed there5 for more detailed information regarding its application and characteristics.

5Frequently updated information regarding ACO, including publications, bibliographies and conferences,
can also be found at Dorigo’s homepage: http://iridia.ulb.ac.be/dorigo/ACO/ACO.html

2.3 Stigmergy 35

2.3 Stigmergy

All emergent multiagent systems feature individual entities which interact with each other

to produce a collective behaviour. Interaction between individuals can be considered a form

of communication, and may not be direct (agent to agent). Instead, interactions may occur

indirectly by modifying the environment. In this section, we describe one common means of

indirect communication in swarm intelligence systems, inspired by the interaction of social

insects.

2.3.1 A Brief History

The term stigmergy was originally formulated by Pierre-Paul Grassé, as a means of explain-

ing the observed coordination in nest construction by Bellicositermes termites[76]. Previous

to this landmark study, two near-opposite schools of thought presided over the explanation

of social insect behaviour. The organicist school considered insect colonies as examples of

a single super-organism (based on Alfred Espinas’ application[56] of the metaphor devised

originally by Herbert Spencer[148]), by observing that the tendency for individuals to collect

together into societies mirrors the tendency of cells to form multicellular organisms. These

similarities were also noted by Wheeler in the famous paper An ant colony as an organism:

“An organism is a complex, definitely coordinated and therefore individual-

ized system of activities, which are primarily directed to obtaining and assim-

ilating substances from an environment, to producing other systems, known as

offspring, and to protecting the system itself and usually also its offspring from

dangers emanating from the environment. The three fundamental activities enu-

merated in this definition, namely nutrition, reproduction and protection, seem

to have their inception in what we know, from exclusively subjective experience,

as feelings of hunger, affection and fear respectively.”[163]

This was based on the observation that both individuals and animal societies share several

common features, including acting as a single unit, exhibiting behaviours often characteristic

of only that species, and undergoing cycles of growth and reproduction. In this manner,

2.3 Stigmergy 36
G. Theraulaz and E. Bonabeau A Brief History of Stigmergy

Figure 2. Stimulus-response sequence leading to the construction of the mud funnel in the nest of the Eumenid wasp
Paralastor sp. Each new building stage n is completed after a stimulus Sn triggers a new ensemble of building actions
Rn. The completion of each building stage n gives rise to a new stimulus SnC 1 that triggers new building actions RnC 1
leading to the construction of the next building stage n C 1. When the !fth stage has been completed, there exists
no more stimulus on the funnel to trigger new building actions and the construction stops.

als. This mechanism opens the way for an indirect coordination of individual activities.
The processes that regulate such interactions are not limited to the direct in!uence of
the stimuli produced by individuals. Indeed, each animal’s activity is organizing the
environment in such a way that stimulating structures are created; these structures can
in turn direct and trigger a speci"c action from any other individual from the same
species that comes into contact with them. Chemical trails that are produced by some
ants species [10, 23], muleteer trail networks, and even dirt tracks and trail systems in
man [31, 32] result from interactions of this kind.

One of the most interesting examples studied by Grassé is the building behavior
of termites. Stigmergy (from the Greek stigma: sting and ergon: work) was initially
introduced to explain indirect task coordination and regulation in the context of nest
reconstruction in termites of the genus Bellicositermes [26, 28]. Grassé showed that
the coordination and regulation of building activities do not depend on the workers
themselves but are mainly achieved by the nest structure: A stimulating con"gura-
tion triggers a building action of a termite worker, transforming the con"guration into
another con"guration that may trigger in turn another (possibly different) action per-
formed by the same termite or any other worker in the colony. Stigmergy offers an
elegant and stimulating framework to understand the coordination and regulation of
collective activities. The main problem is then to determine how stimuli are organized
(in space and time) to generate robust and coherent patterns: Colonies of a given
species produce qualitatively similar patterns, be they nest architectures or networks of
foraging trails and galleries.

2.4 From Sequential to Stigmergic Activity
To better understand how multiple, “independent” building actions can be coordinated
through a stigmergic behavioral algorithm, it is instructive to look at nest construc-
tion in solitary species. The experiments performed by Smith in 1978 on a solitary
wasp shed some light on the origin of coordination of building activities and on the
preadaptation (to sociality) of this behavior [41]. Nest construction in the Eumenid
wasp Paralastor sp. occurs as a stimulus-response sequence in which the completion
of one stage provides the stimulus for commencement of the next (see Figure 2). A
wasp begins with the excavation of a narrow hole, approximately 8 cm in length and
8 mm in width. When the nest hole has been completely lined with mud, the wasp
begins the construction of a large and elaborate mud funnel above its entrance. The
funnel is built in "ve distinct stages from a series of mud pellets that are applied in a

102 Arti"cial Life Volume 5, Number 2

S1

R1

S2

R2

Stop

time

S3

R3

S4

R4

S5

R5

Figure 2.3: The sequential building activity of the wasp Paralastor. Adapted from [157].

the behaviour of an entire insect colony could be explained using the same techniques and

motivations as if it were a single creature.

The alternative, termed here the analytic view, insists that what is observed as the

behaviour of an entire animal society can only be the result of the behaviours of the individual

entities within that collective:

“. . . all these individuals are working. . . the “collective” work is only the jux-

taposition of individual works. . . [T]he common work is no more than a side effect

of the interattraction that gather[s] individuals together.”[134]

Grassé’s ‘stigmergy’ (coined as a conjunction between the Greek stigma, to sting, and

ergon, to work) demonstrated a bridge between the actions of the individual and the actions

of the insect colony as a whole. In the original termite study [76], it was shown that the

coordination and regulation of the building behaviour of multiple termites was guided by

the structure itself. Each individual’s actions are determined by the current state of the

local environment. A stimulating environmental configuration of material triggers building

behaviour within the individual, which in turn transforms the environment, resulting in a

new local configuration of material, which may (or may not) trigger further actions.

This behaviour is also clearly demonstrated in the study of the solitary wasp Paralastor

by Smith[145], illustrated in Figure 2.3. During stigmergic construction, at the end of each

building stage the resulting structure acts as the stimulus triggering construction of the

subsequent building stage.

2.3 Stigmergy 37

G. Theraulaz and E. Bonabeau A Brief History of Stigmergy

Figure 3. The construction of an abnormal mud funnel in the nest of the Eumenid wasp Paralastor sp. When the
funnel is almost completed, a spherical hole (indicated by the arrow) is made. This hole is equivalent to stimulus S1 ,
which triggers funnel construction. As a consequence, the wasp builds a second funnel, over the hole and on top of
the !rst one already built.

highly stereotyped sequence. Stage 1 involves the building up of the funnel stem by
application of a series of mud pellets until it reaches a length of 3 cm. At Stage 2 the
wasp ceases to build uniformly upward, and by adding more mud to one side begins
the construction of a uniform curve in the stem of the funnel. Once the curve has been
completed, Stage 3 begins with the formation of a bell with the splaying of the stem to
form a uniform !ange of approximately 2 cm diameter. At Stage 4, the !ange is next
widened more on the side nearest to the stem than elsewhere, thus giving the bell a
characteristic asymmetry in one direction. Finally at Stage 5, the sides of the bell are
formed by building uniformly downward from the edge of the !ange. At the end of
each stage of building, the stimuli for the responses that lead to the completion of the
next stage are those that the animal encounters as a consequence of its earlier behavior.
What happens when the stimuli that trigger the beginning of a previous building stage
are encountered by the wasp just as it "nishes the end of a particular stage? Smith
examined this question in one of his experiments. A spherical hole located in the
neck of a funnel is made just after Stage 3 has been completed (see Figure 3). After
examining the damage several times, the wasp begins the construction of a second
funnel, over the hole and on top of its "rst funnel. This result is extremely important
for anyone who wants to understand the coordination of building activities in social
wasps and more generally in social insects. In a solitary species such as Paralastor
sp., the indirect coordination of its behavior through the previous consequences of its
building actions results in a sequential-like behavior. There are two consequences to
this behavior.

First, the order in which stimuli arise in the course of the construction must follow a
precise sequence. If by chance a stimulus triggering a set of building actions that gives
rise to a previous subelement of the architecture is present at a later stage, this will
automatically lead to a redundant structure and an abnormal nest architecture. This
observation, as we will see in the next section, has important consequences in the
coordination of building activity in social wasps.

Second, if one wasp does not distinguish the product of its own activity from that of
another wasp, the two wasps can in principle work at completing the same nest struc-
ture. One wasp could continue the work of the other at whatever stage of construction
of the nest. Such a mechanism may then in turn be a step toward indirect cooperation
between individuals. This is precisely the mechanism that Grassé had in mind when
he introduced the concept of stigmergy.

Arti"cial Life Volume 5, Number 2 103

S1

R1

S2

R2

S5

R5

S1

R1

S2

R2

S5

R5

Stop

time

Figure 2.4: When a stimulating environmental configuration is created out of sequence, the
pathological building behaviour of the stigmergic agent is revealed. Adapted
from [157].

Stigmergic Construction Pathologies

However, the clearest example of the nature of stigmergic behaviour occurs when a stimu-

lating configuration is created out of sequence, as illustrated in Figure 2.4. In this figure,

once Stage 5 is achieved a hole is created, mimicing the stimulating configuration for Stage

1. Upon detection of this configuration, the building behaviour appropriate for State 1 is

triggered within the wasp, and a new funnel is created and developed from this point.

While the examples above consider a solitary insect, if two or more insects do not (or

cannot) distinguish between each other’s work, one could easily continue the construction

initiated by another. It is this type of indirect interaction implied by Grassé with the term

stigmergy. For a more detailed discussion of the history of stigmergy, the reader is referred

to Theraulaz & Bonabeau’s excellent Special Issue of the Artificial Life journal[157].

2.3.2 Types of Stigmergy

While the principle of stigmergy – the guidance of agent behaviour by previous modification

to the environment – is now clear, it is at best a general principle. It remains unclear exactly

how changes in the environment might affect the behaviour of agents. The two commonly

cited ‘types’ of stigmergy are quantitative and qualitative stigmergy. These differ in the

type of stimuli which may trigger action in participating agents.

2.3 Stigmergy 38

2.3.3 Quantitative Stigmergy

In quantitative stigmergy, stimuli are present in different quantities. The most obvious

examples of such a stimulus are pheromones – chemical markers deposited by insects either

onto material within the environment, or directly into the environment itself. Differing

quantities of pheromone are then detected throughout the environment as the chemical

disperses. Further away from the original deposit, the strength of the marker is weaker.

Additionally, the strength of the chemical ‘scent’ decays over time (unless it is strengthened

through further pheromone deposits).

In Grassé’s original stigmergy research[76], termites marked pellets of soil with pher-

omone. These pellets are then randomly deposited in the local environment. Where these

pellets are deposited close together, the cumulative strength of the pheromone encourages

further deposits, and additional material is placed at such sites. In this manner, eventually

certain sites (those where sufficient amounts of soil pellets were randomly placed) will have

accumulated a sufficiently high concentration of chemical marker that most building activ-

ity will be focused there, while in other locations within the environment, the decay of the

pheromone reduces the likelihood of further construction. This focussing of construction in

certain region produces the individual pillars seen in termite nests.

Further examples of quantitative stigmergy can be found in the ant-inspired robotic

sorting work of Deneubourg et al.[46, 45]. Mason’s model of nest construction[115] de-

pends on the geometry created by interacting pheromones. Quantitative stigmergy can

also be considered as the mechanism underlying ant foraging behaviour and shortest-path

determination[132, 12, 11]. The emergent multiagent system by Steels[149] (described pre-

viously) also demonstrates this pheromone-based coordination via the environment.

2.3.4 Qualitative Stigmergy

In contrast with quantitative stigmergy above, a system exhibits qualitative stigmergy when

the agents respond to a discrete set of types of stimuli. The building behaviour shown in

Figures 2.3 and 2.4 demonstrate such a system. At each stage, the arrangement of material

in the environment presents the agent with a distinct stimulating configuration (S1, S2, and

2.3 Stigmergy 39

so on). Whenever the agent encounters S1, the agent performs the response action for that

stimulus (response action R1 in that example). In this manner, an agent’s behaviour is

regulated by a set of condition-response rules, triggered whenever a matching environment

is encountered.

Excellent discussions of qualitative stigmergy, and the nest-building behaviour of wasps

in particular, are available in work over the past ten yeras by Theraulaz, Bonabeau et

al.[157, 156, 17] and Karsai[98].

Sematectonic Stigmergy

When communication takes place only through manipulation of material the environment,

this form of behaviour is defined as sematectonic stigmergy[31, 129]. The best example of

this type of behaviour is given in the nest-building lattice systems described by Theraulaz,

Bonabeau et al.[158, 156, 29, 17], and similar systems by Karsai & Theraulaz[95, 94, 96, 99,

98], where the environmental changes sensed by agents are the developing nest structures

themselves. Sematectonic stigmergy can also be seen in the robotic collecting behaviour

demonstrated by Holland et al.[12, 86], as the environmental modifications are part of the

goal-directed behaviour.

Sematectonic stigmergy and the work of Theraulaz, Bonabeau et al. form the basis of the

original research presented within this thesis. Accordingly, their research with these systems

will be discussed at length in Chapters 3 and 5, and throughout the remainder of this thesis.

2.3.5 Alternative Stigmergic Mechanisms

One aspect of stigmergic behaviour which remains unconsidered is highlighted by Holland in

[86]. In order for stigmergy to be present, it may be sufficient that changes in the environment

only modify the outcome of an agent’s existing behaviour, rather than cause the agent to

select a qualitatively different behaviour. In other words, the previous behaviour of other

agents may have a qualitative or quantitative effect on some measurable parameter of the

outcome of the current action.

In this context, Holland[86] also notes an interesting third potential stigmergic mechanism

2.3 Stigmergy 40

– passive stigmergy. This type of environmental interaction lacks the notions of agency

required for both quantitative and qualitative stigmergy:

“Consider a car being driven along a muddy track. Although the driver might

try to steer a particular course, the wheels may settle into deep ruts that take

the car along another course. The actions taken by previous drivers have affected

the outcome of the actions taken by the present driver.”[86]

This notion of stigmergy approaches the purely physical behaviour demonstrated the

effects of environmental forces within nature – the change in path taken by a river as a result

of erosion caused by its own flow, for example . However, it is important to understand the

distinction between action and outcome, as highlighted above.

2.3.6 Some Stigmergic Systems

Many of the emergent multiagent systems described above employ stigmergic interactions

to achieve their intended collective behaviour. For instance, Steels’ trail-laying agents[149]

coordinate their actions by communicating through the environment, and each agent bases

its current selection of activity only on local environmental information.

The clustering described by Deneubourg[46] and robotic implementations by Beckers

et al.[12] and Holland[86] exhibit sematectonic stigmergic communication: as each agent

modifies the environment, larger clusters are formed and the individuals begin to ‘cooperate’

in building fewer, larger clusters of items.

The models of nest excavation presented by Jérôme et al.[28] and Bonabeau[18] demon-

strate the construction of ‘galleries’ (tunnels) using stigmergic environmental modification

and trail-laying. Jérôme[28] also demonstrates collective adaptation – as factors (such as

colony size) are modified while the system operates, the nest structure is automatically

adapted to accommodate the necessary changes.

Finally, the abstract models of nest construction presented by Bonabeau and Theraulaz[158,

156] feature agents which interact only using sematectonic stigmergy: as the nest architec-

ture is constructed by the placement of bricks, the stimulating configurations present in the

environment change and affect the building behaviour of the agents.

2.4 Designing Emergent Multiagent Systems 41

An extensive bibliography of systems which either discuss or implement some form of

stigmergic swarm intelligence has been collated by Shell6, and the interested reader is directed

there for further examples of stigmergy in both simulation and robotic implementation.

2.3.7 Stigmergy, ACO and Swarm Intelligence

It is worth remarking that stigmergy may be present in systems containing only a single

agent (such as the Nest systems[158, 156]), and as such may not strictly be an example of

‘swarm intelligence’, given the obvious lack of ‘swarm’. It can also be demonstrated that

ant colony optimisation[17, 50, 69, 51] (ACO), the most popular and prominent example of

swarm intelligence, may also be accomplished with a single agent[35], Given a pheromone

which can be reinforced by a single agent faster than the marker decays, a single agent is

capable of producing a shortest route solution.

However, such a harsh distinction discredits the significant cumulative speed-up which

occurs when more than one agent is present in either of these systems. Nevertheless, ACO

examples fulfilling such criteria will fall into the same category of emergent systems as the

stigmergic systems which are the basis of the remainder of this thesis.

2.4 Designing Emergent Multiagent Systems

“Swarm intelligence [is] “the interplay of computation and dynamics”. The

goal. . . is to explore that interplay and determine how to best, and most simply,

design the computational component in order to take advantage of the dynamics”[117]

A constant underlying motivation behind any investigation into stigmergy, emergence

and self-organisation is the application of these mechanisms towards solving novel problems.

Biologically-inspired techniques[29, 17] have yielded excellent results in the fields of optim-

isation (e.g. Ant Colony Optimisation[51], above). However, the application of collective

intelligence mechanisms to problems which are further removed, or less clearly analogous to

their biological counterparts remains far more elusive. Very little work exists regarding how

6Dylan Shell’s extensive annotated ‘stigmergy’ bibliography is available (as of January 2005) at
http://robotics.usc.edu/˜dshell/stigmergy.php

2.4 Designing Emergent Multiagent Systems 42

the emergent behaviours taken from biological and social systems can be applied to solve

arbitrary problems[17, 150].

2.4.1 Controlling Emergence via Symbolic Behaviours

One of the first attempts to formulate a practical approach to building systems which exploit

emergence is presented by Wavish[161], who suggests creating a set of symbolic behaviours

correlated with the presence or absence of the corresponding emergent behaviours within an

agent.

For instance, if a set of basic behaviours7, such as avoid wall and move toward wall,

are known to produce an emergent behaviour, when these basic behaviours are active the

symbolic behaviour wall following is turned “on” within the agent. In a similar manner,

other emergent behaviours may be “on” or “off” depending on which basic actions are cur-

rently being performed. Designers are then free to program higher-level activity based on the

presence of these emergent behaviours. Wavish presents an implementation demonstrating a

simulated dog herding together a flock of sheep. Emergent behaviours such as drive sheep

are composed of round up sheep left and round up sheep right.

Working with emergent behaviours is this manner, however, requires the designers to be

able to accurately determine which basic behaviours might combine to produce an emergent

effect. Furthermore, the agent must be able to recognise the appearance of these emergent

behaviours and internally ‘note’ whenever some symbolic behaviour might be active. In

effect, the designer must still manage the emergent behaviour by hand, and ‘symbolic beha-

viours’ simply act as a grouping of some pre-determined set or sequence of primitive actions

upon the world.

2.4.2 From Simulation To Robotics

In [116, 117, 118], Mataric presents a troupe of robots, affectionately dubbed the “Nerd

Herd”, upon which a variety of emergent behaviours have been implemented. In a similar

manner to Wavish, higher-level behaviours are composed from the simultaneous activation of

7Basic behaviours may be movements or other primitive and most likely physical actions.

2.4 Designing Emergent Multiagent Systems 43

‘basis behaviours’8 – following, dispersion, aggregation, homing and safe-wandering.

These behaviours can then be run in parallel (in a similar fashion to Brooks’ Subsumption

Architecture[26]) upon embedded processors within the robotic agents. Each basis behaviour

suggests an output for the motors controlling the movement of the robot, and these outputs

may be summed together, or subtracted from each other, to derive the final output to be

sent to the actuators themselves. For example, ‘flocking’ can be achieved by summing the

outputs of:

• safe-wandering – preventing the agent from moving such that it would collide with

any objects

• disperse – checking the proximity of this agent to its nearest neighbours, and moving

away from the calculated centre of local agent density (the ‘centroid’[117])

• aggregate – moving towards the nearest agent, if that agent is beyond a certain

threshold

• homing – moving the agent towards some identified location within the environment

By summing the suggested movements of all these basis behaviours, the net result is that

the agents will move together as a pack, maintaining a steady distance from each other while

avoiding any objects, and moving towards a common destination; in order words, moving

like a flock of birds, or a shoal of fish, through the environment.

Despite the apparent success of the composition of emergent behaviours in a multiagent

system, it remains unclear how these ‘basis behaviours’ might be composed to perform

behaviours outside of the already well understood flocking[137], sorting[12, 86], foraging[149,

54] and other behaviours lifted directly from the biological context from which they were

inspired. The important question must be raised – can multiagent systems be coerced into

demonstrating emergent behaviours which are unlike those seen in social insects?

8Basis behaviours themselves are actually short algorithms build from primitive actions and sensor con-
ditions.

2.4 Designing Emergent Multiagent Systems 44

2.4.3 Designing Emergence with Stigmergic Construction

The seminal lattice swarm experiments by Bonabeau, Theraulaz et al. attempted to explore

the potential of (qualitative) stigmergic systems using random[156, 158, 17, 29] and then

genetic algorithm search techniques [22, 19]:

“We undertook a modelling approach by looking for the simplest automata

that could generate complex architectures similar to those observed in nature. . . Then

by working “backwards” from the shapes to be generated to the potentially

corresponding algorithms, we eventually found it possible to produce complex

shapes, some of them strikingly similar to those seen in nature”[22]

It is therefore clearly possible to produce ‘interesting’ architectures using their Nest

model, and additionally possible to reverse-engineer stigmergic algorithms which could pro-

duce individual structures. However, for such a system to

“. . . provide engineers with valuable insight when they need to design pro-

grams or machines exhibiting collective problem solving abilities. . . ”[22]

it is insufficient to merely show that some structures can possibly be generated. Instead,

an engineer must know when it is appropriate to apply stigmergic techniques, and when

there is little benefit. Furthermore, no comment was made regarding the complexity of

such reverse-engineering efforts. This may be likened to the computational power of cellular

automata (CA); while it is possible to design and build universal computing devices within

the substrate of a CA[166], it is far from productive to do so, in engineering terms.

Existing Stigmergic Design Work

The only existing work in the stigmergic arena which attempts to generate a methodology

for the design and application of stigmergy to arbitrary tasks is presented by Mason[115].

This approach, as the author dubbed ‘stigmergic programming’, uses stigmergic behaviour

triggered by the intensity of two pheromone gradients on a two-dimensional plane. This is

illustrated in Figure 2.5. Two pheromones (A and B) are initially deposited in the environ-

2.4 Designing Emergent Multiagent Systems 45

-bc

-ac

C'

Figure 2.5: Mason’s ‘stigmergic programming’. The next location of building is defined by
rules specifying the strengths of both pheromones A and B. On the right, the
resulting curved wall of construction is shown. Figure adapted from [115]; the
dashed red vectors are discussed in the text.

ment. The nest building location (C) is defined by specifying the relative strength at this

location of both pheromones (as indicated by the magnitude of vectors ac and bc):

“A rule triggered by a band of intensity of a particular pheromone will, given a

single deposit of that pheromone, be triggered in a ring centered on that deposit.

Adding a second deposit breaks radial symmetry and creates an ellipse-shaped

activation potential. By stringing together ellipses, directed chains of deposits

can be formed.”[115]

However, as shown in Figure 2.5, this does not fully specify the building behaviour of the

swarm, since an identical ‘ellipse-shaped activation potential’ exists in the mirror symmetry

through the original deposits. This is shown in the red dashed modifications in Figure 2.5. In

Mason’s original work, only point C is considered as the next site of activity. However, point

C ′ exists at equal distances from A and B, so it would be impossible for an agent to determine

whether or not its current location was C or C ′ based on the pheromone densities alone.

While it is possible to counter this if the agent has access to some form of global information

(i.e. an internal compass and the ability to detect the gradient itself, rather than just its

intensity at given points), such measures remain unconsidered in Mason’s original work.

2.5 Initial Conclusions 46

2.5 Initial Conclusions

From this survey of existing, related work, it can be seen that ‘emergence’ is a subject

which continues to inspire vigourous discussion. An steadily increasing wealth of research

into systems which may claim to demonstrate such a quality is also being produced. In

particular, there is a significant focus on systems which feature stigmergy as one of the

interaction mechanisms through which the collective behaviour is achieved.

As the terminology which describes their behaviour is debated, insights from related fields

such as the study of complexity[102, 55, 77, 100], self-organisation[5, 86, 29], biology[163, 64]

and social science[38] will continue to fertilise this intriguing approach to understanding and

manipulating complex systems.

For the purposes of the original work presented hereafter, the philosophical quagmire

which surrounds emergence should not be taken too seriously. It is sufficient here to accept

Bedau’s “weak emergence”[13] (see Section 2.1.3) and focus not on the implications of this

choice, but rather on the more practical aspects of controlling the global behaviour of a

collection of autonomous but simple agents.

Bonabeau clearly describes the issue faced by designers of emergent systems:

”Given a problem, what should be the specifications of individual agents and

the pattern of their interactions so that the dynamical evolution of the collection

of agents leads to a reasonably good solution to the problem?”[18]

Unfortunately, little progress has been made in the development of practical emergent design.

The design of emergent multiagent systems currently relies on references to a catalogue of

instances (both from recent research and the natural world), but this may have contributed

to the limited number of real-world applications of emergence and stigmergy[51, 50]. It would

seem foolish to assume that the scope of emergent behaviours is limited to applications which

neatly fit into such natural metaphors.

The original work presented here attempts to go some way towards testing the behavioural

envelope of stigmergic systems, and providing a new set of tools with which we can explore,

and exploit, these capabilities.

Chapter 3

Nest-2.11.1 – Nest Building using

Discrete Stigmergy

Overview

In this section the existing work by Bonabeau, Theraulaz and their co-workers[158, 156, 22,

19] with regards to abstract stigmergic systems is reviewed. Their original simulation system

– Nest-2.11.1 – is described, along with the methods and findings of their work with this

software.

In [156, 158], Theraulaz and Bonabeau set out to “explore the space of possible architec-

tures that can be generated with a stigmergic algorithm”. They then set out a simple model

– outlined below – which can be used to simulate the natural building process, and assert

certain characteristics which are required for the generation of nest-like structures. The size

of the space of possible stigmergic algorithms is also noted, and the constraints a space of

this magnitude brings to a systematic exploration of the behaviours of stigmergic systems,

even within their limited model.

The work presented in [22, 19, 17] describes the use of genetic algorithm techniques to

search the space of algorithms. This reintroduces the problem of determining the fitness

function for a structure, along with some fundamental problems regarding the evolution of

algorithms in general. A further discussion of this work is found in Section 3.4.

3.1 Lattice Swarms 48

X

Build RED here

Lattice

Agent

Rule

Brick

Cell

Figure 3.1: A simple representation of the main features of a lattice swarm system.

First however, a simple description of the model which forms the basis of the rest of this

research is presented below.

3.1 Lattice Swarms

The model presented by Bonabeau et al.[158, 156, 22, 19], and implemented with their

Nest-2.11.1 software, is an example of an extremely simple system which is capable of

demonstrating some of the construction behaviour seen in social insects. This model relies

upon the segmentation of space into discrete, uniform regions hereafter referred to as cells.

These cells are arranged in a regular manner so as to form a space-filling lattice of discrete

locations within the entire space being modelled. Cells may be empty, or may contain a

piece of matter, otherwise known as a brick. A brick completely fills the region of space

represented by the cell, such that each location within the lattice can hold one and only one

brick at any time. Two distinct types of brick are available.

Bricks are ‘deposited’ by an asynchronous automaton – the agent which represents the

social insect. This agent is capable of moving around arbitrarily within the three-dimensional

space described by the lattice of cells, moving from one randomly-selected empty cell to

another. Once a brick has been placed within the lattice, it can neither be removed nor

3.1 Lattice Swarms 49

modified in any way. Initially, the lattice contains a single brick.

At any point in time the agent may occupy a region of the lattice whose local arrangement

of bricks and empty cells corresponds to a pre-determined stimulating configuration. The

agent has access to a list of such configurations, otherwise known as rules. The list of rules

is also called a stigmergic algorithm or stigmergic script. If an agent encounters a local

configuration which matches one of the rules within the algorithm, a brick is placed in the

agent’s current location. The type of brick placed is determined within the rule.

This model describes the essence of the abstract system upon which the rest of this work

is based.

3.1.1 Terminology

The description given above is a complete but very compact overview of the type of system

considered in the rest of this thesis. While the systems later might relax or remove some

of the constraints outlined above, the fundamental elements – cells, bricks, and rules – are

constant

A Cell is the fundamental unit of space within the stigmergic system. Conceptually, a

certain location space can be empty or filled, and an agent must occupy a certain

region of space. A Cell defines the limits of this region, and the geometric relationships

between different regions of space. Internally, a cell simply has a certain state or value,

which determines whether or not it is filled or empty, and the type of brick present if

it is filled.

A Brick is therefore simply a filled Cell. Bricks can be of various distinct ‘colours’, which

are actually represented by the subset of cell values which does not include EMPTY. To

clarify even further: discussion of bricks and colours is a nod towards the biological

inspiration for this model; cells, cell values and cell states are indicative of the under-

lying model itself. Furthermore, the number of brick colours is generally one less than

the number of valid cell values within a stigmergic system, since cells may also have

an EMPTY value.

3.2 The Nest-2.11.1 Software 50

A Neighbourhood is simply a collection of cells (neighbours) which are immediately spa-

tially adjacent to one cell in particular (the central cell); each cell has surrounding it

a neighbourhood of cells.

A Rule is an arrangement of cells, identical in size and configuration to a Neighbourhood.

Whereas a neighbourhood is a subset of the cells in situ within the global simulation

space, rules do not exist within the spatial lattice; they are examples of neighbourhoods.

Furthermore, the central cell in a rule defines the modification to the environment if

the rule ‘fires’.

A Stimulating Configuration is simply a Neighbourhood which is matched in a cell-

to-cell comparison with a Rule in this stigmergic system. The comparison generally

ignores the contents of the central cell, since it will normally be EMPTY in the neigh-

bourhood, and filled with a brick in the rule.

3.2 The Nest-2.11.1 Software

The Nest-2.11.1 application is an implementation of the simple model described above.

Stigmergic algorithms in two and three dimensions can be developed, within both cubic and

hexagonal lattices. A significant number of auxiliary functionality has also been integrated

in Nest-2.11.1 , primarily mechanisms for generating stigmergic algorithms using genetic

algorithm techniques. The extended techniques are discussed further in Section 3.4. This

software has kindly been made available for the purposes of this project by Guy Theraulaz1,

Kjerstin Easton2 and Joe Andrieu. Several screenshots of the software in use are presented

below.

Figure 3.2 shows the main interface to simulations in Nest-2.11.1 . A number of simula-

tions can be simultaneously loaded at one time, and interfaces for modifying, simulating and

evaluating architectures are provided. Figure 3.3 shows a stigmergic rule being displayed and

modified. On the right a 3D version of the rule is shown, while the left shows each individual

1theraula@cict.fr
2easton@caltech.edu

3.2 The Nest-2.11.1 Software 51

Figure 3.2: The main interface window for the Nest-2.11.1 software.

layer. The centre cell within the middle layer shows the colour of brick which will be built if

this rule fires. Finally, Figure 3.4 shows the inspection of a constructed architecture. In this

figure, an invisible cut has been made, allowing the user to see ‘inside’ the structure without

modifying the arrangement of bricks directly.

3.2.1 Nest-2.11.1 Implementation

The software is written in the C programming language, requiring a Unix or Unix-variant

operating system with the X11 display environment to compile and run. With some effort

it can be made to run on both Mac OS X systems, and Microsoft Windows systems using

either Cygwin3 or MinGW4 as a UNIX emulation layer between the Nest-2.11.1 software and

the underlying operating system. However, substantial experience compiling and debugging

software on Unix systems is required to achieve this.

3Refer to www.cygwin.org for more information.
4More details about MinGW can be found at www.mingw.org.

3.2 The Nest-2.11.1 Software 52

Figure 3.3: Editing rules in the Nest-2.11.1 software.

Figure 3.4: An architecture built by the Nest-2.11.1 software.

3.3 Coordinated Algorithms and Coherent Structures 53

3.3 Coordinated Algorithms and Coherent Structures

It was noted after an extensive random sampling of algorithms that the only structures which

appeared to contain significant coherent structure were those where the algorithm had been

designed by hand:

“We have tested 106 randomly selected algorithms containing up to 40 stim-

ulating configurations (+symmetries around the z-axis)”[156]

“A random exploration of the space of algorithms. . . yields no interesting res-

ult but only random or space-filling shapes. However, it is possible to produce

complex shapes, some of them strikingly similar to those observed in nature. . . by

working backward from some shapes to be generated to their corresponding

algorithms.”[17], Section 6.3.2

“Theraulaz and Bonabeau found a posteriori that structured shapes can only

be built with special algorithms, coordinated algorithms, characterized by emer-

gent coordination: stimulating configurations corresponding to different building

states must not overlap, thereby avoiding the deorganization of the building

activity.”[17]

“In order for the construction to proceed in a coherent way, there has to be a

succession of a certain number of qualitatively distinct building stages. . . We call

such a building algorithm . . . a coordinated algorithm.”[158]

A detailed discussion of the concept of ‘coordinated algorithms’ can be found in Section

5.1. For the meantime, we can see that this assertion demands the presence of distinct build-

ing stages, each entered in a controlled fashion and each corresponding to and responsible

for some clearly-defined structural feature within the completed, ‘coherent’ architecture.

“The difference between [coherent and incoherent] architectures is striking,

though hard to formalize. One given coordinated algorithm always converges

toward architectures that possess similar features. On the other hand, algorithms

3.4 Evolution of Stigmergic Algorithms 54

that produce unstructured patterns sometimes diverge: the same algorithm leads

to different global architectures in different simulations.”[17]

The informal meaning of ‘coherent’ here, with regards to an architecture and its con-

struction, is as an antonym of chaotic. In other words, an observer would find it significantly

easier to grasp regularities in the placement of bricks in a coherent architecture than in a

non-coherent one.

A second property of ‘coordinated algorithms’ suggested above is the similarity of the

architectures produced over multiple simulations; any number of architectures produced

by the same coordinated algorithm will be structurally similar, whereas if the same set of

simulations was performed using an uncoordinated algorithm, the resulting architectures will

have little in common.

“This tendency to diverge comes from the fact that stimulating configurations

are not organized in time and space and many of them overlap, so that the

architecture grows in space without any coherence.”[156]

A factorial correspondence analysis[156, 15]5 is presented to show that the coordinated

algorithms considered, or discovered, exist within a compact region of the space of all stig-

mergic algorithms. This suggests that not only are these ‘coordinated algorithms’ rare –

so rare that not a single one was found during the random search – but there also exists a

significant relationship between close algorithms and close architectures.

The notions of ‘coordinated algorithm’, ‘coherent architecture’ and the assertions made

above are critically examined in Chapter 5, where we will attempt to further the original

investigation into the behaviour of these abstract stigmergic systems along the directions

initiated in [158, 156, 17].

3.4 Evolution of Stigmergic Algorithms

As will be described in detail in Section 5.5.1, it is clear that the size of the space of algorithms

is far too large to explore systematically. To circumvent this issue, a genetic algorithm was

5For an English translation of [15], see http://www.micheloud.com/FXM/COR/E/

3.4 Evolution of Stigmergic Algorithms 55

applied[22] and then revised[19] in an attempt to search the problem space automatically

for new ‘coordinated’ algorithms.

In order to apply genetic algorithm techniques, a fitness function for evaluating the

performance of individual solutions must be provided. The goal of this system is to produce

coherent architectures, but as was recognised immediately by Bonabeau et al:

“. . . it is in the present case hard to define fitness functions on architectural

phenotypes (it is difficult to define formally the adaptive value of the biological

plausibility of the shape of a nest: what is an “interesting” architecture?)”[22]

The subjective nature of evaluating some product as ‘interesting’ (or indeed ‘coherent’,

as we will see later) is a significant problem when attempting to automatically generate such

an item. Instead, the initial fitness function measures a “behavioural phenotype”, derived

from a simple observation of the existing coordinated algorithms:

“In algorithms that generate coherent architectures, many micro-rules are

used, whereas in algorithms that generate structureless shapes, only one rule or

a few rules are actually used in the course of the simulation.”[22]

Each algorithm in the population was simulated until a fixed proportion of the lattice

was filled with bricks, or a limit on the number of simulation cycles to run was reached, at

which point the algorithm was assigned a score by counting the number of rules which fired

during simulation and dividing by 2. Additionally, a small number of biases were introduced:

stimulating configurations containing large numbers of bricks are avoided, since they are

unlikely to fire during any simulation6; each algorithm must contain a rule which matches

against the single initial brick in the environment; and finally some rules that systematically

induce rapid and random space-filling are to be avoided7.

Using an initial population of 500 algorithms, a simple one-point crossover function and

a mutation rate of 0.05%, 106 algorithms, each containing 40 rules, were evaluated. Only a

6Since the simulation begins in ‘empty space’, it is always likely that more empty cells than filled cells
will surround an agent.

7The nature of these rules is never made clear in [22], but they may correspond to a set of rules termed
self-activating, introduced in Section 5.5.4.

3.4 Evolution of Stigmergic Algorithms 56

small number of ‘coherent’ architectures were generated, leading to the reiterated suggestion

that “algorithms producing interesting shapes are very rare”[22].

3.4.1 An Improved Fitness Function

A revised fitness function was presented in [19]. While it includes the basic observation of

the original function outlined above, it additionally specifies that coherent architectures are

‘compact’ (in that bricks tend to be face-adjacent rather than edge-adjacent with neigh-

bours), and also that the structure features modular patterns which are large and repeat

themselves.

The fitness function itself relies on the generation of a ‘construction graph’ which maps the

activity of the rules as they place bricks during the simulation. An example of construction

graph generation is shown in Figure 3.5. Each brick in the structure has a corresponding

node within this graph. Each time a brick is placed, a new node is created, labelled with

its order in the sequence of bricks placed and also with the id of the rule which placed it

(represented in the figure as labels of the form <order> / <rule id>. Each node receives

links from the nodes of other bricks which share its neighbourhood at the time it was placed.

The new fitness function is defined according to some properties of this graph, as follows:

F = k × F
1/3
1 × F2 × F3 × F

1/3
4 (3.1)

where F1 is the fraction of microrules used during the simulation, F2 is the compacity of

the architecture, measured using the ratio edges
nodes

, F3 is proportional to the mean size of the

patterns detected in the graph, F4 is an evaluation of the pattern matching scheme, and

finally k is simply a constant. The derivation of each of these terms, and in particular the

pattern-finding scheme, is described in detail in [19].

Crossover Methods

The crossover operation within a genetic algorithm is a naturally destructive process. How-

ever, in this situation it is desirable whereever possible to avoid breaking the dependencies

between rules – the sequences of “handshakes and interlocks”[156] which are the hallmark

3.4 Evolution of Stigmergic Algorithms 57

1

2

3

4

5

0/-2

1/1

2/2

3/3 4/4

5/5

6/1

7/2

8/3

9/4

10/5

11/1

13/2

12/3
14/4

simulation construction
graph

X/Y
X: order brick was placed
Y: rule which placed brick

A B

Brick B placed after A, which A in
its neighbourhood

Figure 3.5: Generation of a Construction Graph. The rules on the left of the figure produce
the central architecture when run in simulation. The construction graph on the
right represents fully the construction process. Each node represents a brick,
the internal labelling indicating the order of placement and the rule responsible.
The initial brick, as a special case, is labelled with rule id −2, indicating that
it was not placed by any rule within the algorithm.

of a coordinated algorithm. For this reason, a simple one-point crossover is not suitable for

an effective search of the problem space. A specialised crossover method was devised, using

a heuristic estimate of the dependencies between rules obtained during simulation. The fra-

gility of algorithms is an issue that will return in Chapter 8, but space does not permit a

further discussion of the specifics of this particular crossover method; for more details, again

refer to [19].

3.4.2 Results

Several positive results are claimed in [19]. First, a positive correlation between the evalu-

ation of the revised fitness function and manually-assigned observer ratings of structure were

demonstrated. This is claimed as evidence that this new function more accurately captures

some measure of coherent structure.

Secondly, reuse of ‘sub-modules’ – small collections of rules responsible for distinct fea-

tures – was observed in the population. This is most likely a verification of the preservation

of inter-rule dependencies by the crossover function (see above).

3.5 Critical Evaluation 58

However, the increase in population fitness is slow, and seems to plateau quickly. The

lowest fitness within the population remains close to zero, highlighting the continued fragility

of these stigmergic algorithms despite the measures taken to preserve significant relationships

between rules.

3.5 Critical Evaluation

Despite the apparent success of the application of a genetic algorithm in the search for

interesting coordinated algorithms, there are several issues which must be examined carefully

when evaluating the significance of these results.

It is difficult to separate much of this criticism from more fundamental issues regarding

the original premise of ‘coherent’ architectures and ‘coordination’ in stigmergic algorithms.

A more thorough critical discussion of these terms appears in Chapter 5.

3.5.1 Algorithm Length

Using a fixed length algorithm automatically in [22] inherently biases the search for ‘coherent’

architectures towards algorithms similar to those which have already been presented as

‘coordinated’ – each of the hand-constructed algorithms contains a significant number of

rules, required by the complexity and modularity of the architectures these algorithms were

derived by “working backward”[17] from.

By demanding that algorithms contain this many rules, and most importantly that all the

rules within this algorithm are utilised, the possibility of finding smaller algorithms which

might exhibit desirable properties is removed. Should such a smaller algorithm exist as a

subset of these 40 rules, the other ‘chaff’ rules, which need never used during simulation to

produce a coherent architecture, penalise the evaluated fitness. This point is actually made

during the initial work, but its relevance not carried through to the latter series of genetic

algorithm experiments:

“[If] random behavioural rules are added to a coordinated algorithm, they

may very well have a relatively small influence, or even no influence at all, on

3.5 Critical Evaluation 59

the corresponding coherent architecture obtained, because such an architecture

is partially or fully constrained, so that random rules are unlikely to ever be

applied.”[156]

To correct this, a variable length genotype was used in the later work[19].

3.5.2 A Subjective Fitness Function

Despite the revision of the fitness function in [19], it remains a collection of heuristics which

correlates with the opinions of a set of subjective observers. It was arrived at via “trial and

error”[19], and while it may be an improvement over the original fitness function, it could

still not claim to be a measure of the coherency of a structure.

What is exposed more explicitly by the derivation of this function is the correspondence

between repeating patterns of bricks and the perceived desirability of an architecture. The

factor F2 is directly proportional to the mean size of the patterns detected within the struc-

ture. These patterns are found using a depth-limited search of the construction graph. The

depth here is set at 4, implying that all interesting patterns can fit within a 5× 5× 5 cube,

and furthermore the term is then biased to “favor patterns with a lot of bricks”[19]. The

size of patterns – the granularity of the modularity – which is considered desirable in this

study is thus made explicitly clear. There appears to be no consideration that significant

structure might be present in architectures built of very much smaller patterns (as we touch

upon in Section 5.2.4), or indeed much larger ones. This issue will be the subject of further

consideration in Chapter 9.

Initial Population Seeding

In [19] it is stated that “the initial population also contains a small number of algorithms

that are known to produce structured patterns.” By doing this, the progress of the genetic

search is clearly skewed towards architectures similar to those already found and analyised

‘a posteriori’ by Bonabeau et al.[156]. This serves to further limit the exploration of possible

algorithms to those within the small region of space where ‘coordination’ is known to happen,

rather than fully explore the range of stigmergic algorithm behaviour.

3.5 Critical Evaluation 60

3.5.3 Smoothness of the Problem Space

The fragility of the fitness of algorithms after even the smallest change would seem strong

evidence that the mapping between close algorithms and close architectures may not be

smooth, or certainly not as smooth as originally asserted in [156]. Bonabeau et al. also

recognise this, despite their simultaneous yet seemly contradictory reiteration of the original

assertion:

“Two close structured architectures appear to be generated by two close co-

ordinated algorithms . . . That two close algorithms generate two close architec-

tures could not be fully tested but is certainly not generally true: for example,

removing a micro-rule from a coordinated algorithm’s micro-rule table may result

in a disorganization of the building process.”[19]

What should be clear from the results of these further studies involving genetic algorithms

is that this closeness actually stems from the ‘sub-modules’ encoded into ‘coordinated’ stig-

mergic algorithms: two algorithms which contain identical or similar building stages will

produce identical or similar architectures.

For example, if an algorithm contains subsets of rules (building stages) which construct

a column and a flat plane of bricks, it is very likely that, with some degree of variability,

the structures produced will exhibit both of these features and thus appear close within the

space of all architectures. The high fitness evaluations presented in [19] for architectures

which share ‘sub-modules’ also support this revised assertion.

The fragility of the algorithms’ fitness under the modification of individual isolated rules,

rather than stages, strongly indicates that any mapping between ‘close’ algorithms (those

which differ by only one or two rules) and the architectures they produce may be far from

smooth. The modification of a single brick within an algorithm through crossover or muta-

tion operations can entirely halt construction progress during simulation. This problem was

clearly exhibited in [22], and somewhat reduced later [19], but an adequate solution in this

particular mode of investigation remains elusive.

3.6 Related Systems 61

3.6 Related Systems

In this section, the relationship between the discrete, abstract model of stigmergy (which

forms the basis of this thesis), and other simple models which have been used to investigate

collective behaviour and ‘emergence’ will be considered.

Furthermore, it is interesting to consider how the simple model used here fits within a

larger set of possible multiagent models; by understanding the choices and restrictions on

this model, we can further clarify how these choices might manifest themselves as aspects of

the system’s behaviour.

3.6.1 Variations on Abstract Stigmergy

While the work presented in [158, 156] is the most often-cited investigation into simulated

stigmergic building, other work does exist. In particular, initial research is presented in [115]

which utilises quantitative stigmergy (i.e. the use of pheromones) for the construction of

walls. Furthermore, this work attempts to define rules using multiple pheromones in order

to spatially guide placement of building material.

An alternative, simple model demonstrating cell placement in comb structures is de-

scribed in [95, 94, 96], along with an algorithm which can produce a wide range of the nest

shapes seen in the Polistes wasp genus. This model uses rules which describe an agent’s

tendency to complete cell rows on the face of the structure.

3.6.2 Relationships to Other Abstract Emergent Systems

All simulations are necessarily abstract, since it is never possibly to completely model the

reality in which emergent systems are observed. The purpose of modelling is in fact to

simply capture the behaviour of a system sufficiently well using only that information which

is believed to be relevant, and discarding any other variables within the system.

The model of stigmergy presented in [156], despite being presented within a strongly

biological context, is similar to other discrete multiagent systems and multi-state networks[1]

which generate ‘structures’. Several such systems are discussed below, and illustrated in

3.6 Related Systems 62

DLA Cellular Automata L-Systems

Figure 3.6: Examples of Diffuse-Limited Aggregation (DLA), Cellular Automata and L-
System structures.

Figure 3.6.

Cellular Automata

Perhaps the most well-known abstract systems are Cellular Automata[?, 168, 109] (CAs),

which despite their simplicity continue to receive significant attention[166]. CAs share the

same spatial lattice as used in the Nest system, but differ primarily in the location of

environmental change. In a CA, each cell’s state is updated during every time segment

of the simulation. This contrasts with the ‘agents’ in Nest-2.11.1 , which limit activity to

only a single location within the lattice at any time. However, if a Nest lattice were filled

with agents, and each agent allowed to apply rules simultaneously, then the resulting system

would correspond directly to a CA.

Additionally, it is also typical for a CA model to feature cells which are limited to binary

states: empty or filled. While this constraint is not necessary (for instance, see [166]), the

largest body of work concerning CA behaviour only considers this binary variety.

Asynchronous Cellular Automata

In contrast to ‘classic’ Cellular Automata, as described above, Asynchronous Cellular Auto-

mata (ACAs) do not update each cell at the same time, using some global clock cycle.

Instead, in each time segment a single cell is selected at random and updated according to

3.6 Related Systems 63

the state of its neighbours, without any other cells having their states updated[142].

While it was never noted by Bonabeau and Theraulaz[158, 156], the Nest model de-

scribed here can be considered a constrained version of this system, since they share many

characteristics:

• A regular lattice arrangement of cells, each of which may take a number of states,

frequently corresponding to ‘filled’ and ‘unfilled’, or ‘alive’ and ‘dead’;

• A single ‘active’ cell, chosen randomly at each time step;

• The state of the updating cell is modified based only on the states of its neighbouring

cells.

However, the Nest model features a further set of constraints:

• The cell selected to be ‘active’ must be an empty cell, and

• The update rules for the ACA must only describe cell transitions from empty to filled

These constraints reflect the notion that an agent can only exist in empty space, not within

the bricks forming the architecture, and also that once a brick has been placed, it cannot be

removed.

Despite the apparent similarity between the Nest model and ACAs, there does not ap-

pear to be any direct transferable knowledge which might assist in the understanding of how

a Nest stigmergic algorithm behaves. Most work surrounding ACAs is focussed either on

modelling very simple patterns from a mathematical perspective[152], exploring the compu-

tational possibilities[166], or reproducing the self-replicating structures examined in studies

of artificial life[123].

An excellent, recent survey covering the many varieties of cellular automata has been

produced by Ganguly et al.[70], and the interested reader is directed there for further details.

L-Systems

L-systems are typically used to model patterns found in nature, such as the striking regu-

larities seen in plants[133] and the patterns formed on shells[119]. L-system rules describe a

3.6 Related Systems 64

grammar of development, representing the transformation or growth of structural elements

from a single initial ‘axiom’. It is possible to produce structures and patterns which are

strikingly similar to those seen in nature, such as the fern pattern shown in Figure 3.6.

The rule used to produce this structure is F[+F+F]F[-FF]F. Each iteration, every instance

of F within the structure ‘string’ is replaced with the string defined in this rule. When the

string is displayed graphically, substrings in square brackets are rendered as branches, with

+ indicating the branch should be drawn to the left of the trunk, and - branches drawn to

the right.

L-systems do not generally operate within a lattice representation of space. Instead,

simple grammars are often augmented with angle parameters which indicate the relative

positioning of branches to be added. In the L-system shown in Figure 3.6, the angle used is

27 ◦.

Since L-systems use a grammar which involves symbol replacement, the behaviour of an

L-system cannot be directly modelled by a Nest system. Within a Nest simulation, material

can only be placed, and not removed, so no replacement is possible.

Diffuse-Limited Aggregation

It is noted in [22, 17] that the Nest model is a generalisation of Diffuse-Limited Aggregation[154]

(DLA), along with other growth models (such as the L-Systems described above). In DLA,

structures are grown within a volume of space, where randomly-moving bricks attach to any

structure they encounter, in a crystalline-growth manner.

It is also noted in [17] that a large number of rules (63× 220 and 240 rules for 3D and 2D

cubic geometries respectively) are required to produce a DLA simulation within the more-

general Nest model. It is also noted that significantly smaller rule sets are possible if the

model is extended to allow rules to contain ‘don’t-care’ cells – that is, cells which match

within the rule regardless of the corresponding bricks in the neighbourhood in which this

rule is firing. With this addition, only 6 rules are required for 3D DLA simulation, and

only 4 in two dimensions. This suggests that other models might be able to more-compactly

express the growth and assembly of certain structures than the Nest model; the stigmergic

3.7 Nest-2.11.1 – Summary 65

construction model presented here does not elegantly encapsulate the behaviour of all simple

systems.

3.7 Nest-2.11.1 – Summary

The original purpose of the work presented in [158, 156] was simply to produce a model

which was capable of reproducing some of the building behaviours seen in social insects, and

certainly in this respect it was been a definite success. Despite the simplicity of the model,

unarguably life-like structures can be produced, and the dynamics of the building process

has been investigated.

However, beyond this it seems little can be said concretely. The space of possible beha-

viours for even this limited, discrete system is vast, and it appears that only a tiny proportion

of the resulting constructions are recognisable as complex or meaningful. Faced with this,

algorithms to satisfy the original goals were constructed by hand, and the strong assertions

surrounding the terms coherent architecture and coordinated algorithm were based on the

properties of these manually-generated systems, as compared to those explored by a limited

random sampling.

By more systematically exploring the space of algorithms through the use of genetic

algorithm techniques[22, 19, 17], the assertions made in [158, 156] have been more thoroughly

tested, and to some extent retracted. In this section it has been shown that the use of a

genetic algorithm exposes important properties of simple stigmergic algorithms. They are

fragile and even the smallest change can significantly affect the behaviour of the simulation

and the structure produced.

It is no longer so clear that the mapping between algorithms and architectures is so

smooth, and the fundamental assertion that ‘coordination’ is required for ‘coherence’ can

no longer be based so strongly on the original analysis. The concepts of ‘coordination’ and

structural ‘coherence’ must themselves be subjected to further scrutiny, and this effort is

continued in Chapter 5.

In the interim, while the software used for this investigations was available for use for

the remainder of the research presented here, it had reached a point in its own evolution

3.7 Nest-2.11.1 – Summary 66

where the restrictions implicit in its implementation placed unacceptable limitations on the

direction of any future research into this particular family of systems.

To set future investigation free from any artificial implementational restrictions, a new

software system was developed – Nest-3.0 – capable of supporting the original model yet al-

lowing freedom for expansion and modification with relative ease. This software is described

in Chapter 4.

Chapter 4

The Nest-3.0 System

Overview

In this section a new system for stigmergic simulation is presented, which improves upon

the Nest-2.11.1 system used in the original work discussed in the previous chapter. This

new software, entitled Nest-3.0 , improves upon the previous version by including: a full

multiagent implementation; more flexible rule construction; and comprehensive support for

rule rotations. Nest-3.0 introduces the ability to remove bricks from the structure in addition

to increasing the number of available discrete brick types, resulting in a general model for

stigmergic architectural modification.

The implementation choices made during the development of Nest-3.0 are discussed, and

an extensible system framework is presented. Each distinct software module is then detailed

along with the objects used to model the simulation state. The details of two lattice geomet-

ries are described and their implementations and differences discussed. The Simulation core

and enhancements to the agent model are then detailed. Finally, performance considerations

and optimisations are outlined and areas for future extension and investigation highlighted.

4.1 Nest-3.0 vs. Nest-2.11.1

The original nest-building simulation system (Nest-2.11.1) and its source code was kindly

made available for this project, but while the concepts which underlie lattice swarms are reas-

4.2 Abstract Stigmergic Improvements 68

Figure 4.1: An example of an interface to the Nest-3.0 system.

onably abstract, the given implementation was very restrictive and would tightly constrain

an further investigation into the properties of such systems.

A new lattice swarm system – Nest-3.0 – was implemented which gives broader scope

of experimentation with greater control over the parameters and constraints involved. The

features of the new system are outlined in Table 4.1 below, with reference to the original

system where appropriate.

4.2 Abstract Stigmergic Improvements

Whilst algorithms have been developed by Bonabeau & Theraulaz using the Nest-2.11.1

software which are very successful in producing ‘biological’ structures, there are aspects of

the simulation system which could be significantly improved.

4.2.1 Brick Geometry

The structures in Nest-3.0 exist within a discrete version of space, split into distinct cells.

However, the design of the software makes no assumptions about the nature of this space,

allowing new geometric arrangements of cells to be used during experimentation. Currently

4.2 Abstract Stigmergic Improvements 69

Feature Nest-2.11.1 Nest-3.0
Implementation
Languages

C++, X11 Ruby, C++, OpenGL

Platform Unix Unix, Windows, Mac OS X
Extensibility Requires recompilation of source

code & detailed knowledge of the
internal system structure

Based on very-high-level script-
ing language (Ruby), simple to
extend

Architecture Geo-
metry

Cubic, hexagonal; hard-coded
into the system

Capable of supporting many ar-
chitecture types

Agent Behaviour Only one agent; movement is
random

Many agents; different (i.e. non-
random) movement behaviours
possible; agents may also carry
internal state if desired

Brick types Limited to 4 colours Virtually unlimited number of
colours

Rules Fixed size, with rotations around
the z-axis only. Rules must
match local environment exactly

Unlimited size, with rotations
around x-, y-, and z-axes pos-
sible; can also match against
dont care cells, or cells which
must be from a specific range of
colours

Building behaviour Agents place bricks in empty
cells in current position only

Agents can place bricks in any
empty space around them; re-
moval of bricks also possible (ex-
cavation).

Table 4.1: Comparison between Nest-2.11.1and Nest-3.0

Feature Cubic Hexagonal
2D Neighbour-
hood Size

9 cells 7 cells

3D Neighbour-
hood Size

27 cells 21 cells

Rotations 24 12

Table 4.2: Geometric differences for cubic and hexagonal architectures. The determination
of rotation is explained fully in Sections 4.5.2 and 4.6.1.

two different cell geometries are available – cubic and hexagonal. Each geometry has nat-

urally different characteristics, notably the number of cells in a local neighbourhood and

differing axes of symmetry. Details of the differences between cubic and hexagonal geomet-

ries are given in Table 4.2.

It was noted when describing the original simulations [156, 158, 19] that structures built

from hexagonal cells were aesthetically ‘more biological’ than those consisting of cubic bricks:

“We see that [hexagonal] geometry allows round shapes to be easily created,

which is not the case for cubic bricks.”[156]

4.2 Abstract Stigmergic Improvements 70

Given that such simulations were directed towards producing nest-like structures which

naturally consist of hexagonal cells this seems hardly surprising. However it is important

to note from this the significance of the fundamental geometries upon which a structure is

based, and the impact of these geometries upon not only what structures are possible, but

which structures are algorithmically simple.

For example, a relatively smooth cylinder can be produced with far fewer rules when

using a hexagonal geometry than when working within a cubic geometry. Similarly, it is

much simpler to generate structures with perpendicular features within a cubic simulation,

as a direct result of the angles at which face-adjacent bricks can be placed. As can be seen

in Table 4.2, both the neighbourhood sizes and number of possible rule rotations is greater

within a cubic geometry than a hexagonal geometry. This in turn increases the number

of possible unique local neighbourhoods and this difference in the size of the state space

can have a significant impact on systematic considerations of stigermgic systems within this

framework. This is explored further in Chapter 5.

The original Nest-2.11.1 system allowed the user to choose between either cubic or

hexagonal cell geometries. Nest-3.0 separates the geometry of the underlying system from

the simulation code, making it simple to provide other types of brick shape for experi-

mentation, or even a closer approximation to cell placement within a continuous spatial

environment.

4.2.2 Perceiving the Local Environment

The perceptual range of an agent within a Nest-2.11.1 simulation is limited within the

simulation to only those cells which are face- or edge-adjacent to the agent’s current location.

For cubic simulations this equates to a 3 × 3 × 3 cube around the agent’s location. For

hexagonal simulations it is represented by the 6 surrounding cells, and the 7 cells directly

above and below it. While this seems to follow a literal interpretation of how a stigmergic

system should behave, with only immediately local simulii influencing the agent, it may be

too simple, disallowing many interesting sense-configurations.

In Nest-2.11.1 , agents are represented as 0-dimensional points with no associated in-

4.2 Abstract Stigmergic Improvements 71

formation: effectively they are not embodied within the space they ‘exist’ within. This is

convenient because it allows the system designer to give this non-entity abilities which are

easier to write in software than produce in the real world. An example of this is the ability

to sense perfectly in all directions around itself, including above and below.

In reality, agents are only able to sense within a limited field depending on their current

orientation. Nest-3.0 allows designers to produce this effect by allowing them to control the

size and region of bricks which the agent can sense in relation to its current position. This

can be used to produce agents which are capable of a wide variety of sensory abilities, such

as only being able to sense directly in front and above their current location for any given

distance.

4.2.3 Rotation

When matching a rule against an agent’s local environment, often it is useful to allow the

rule to be matched in varying rotations around some central axis. Allowing rotations of rules

often produces a simpler rule set, when used appropriately. This can be seen very clearly in

Figure 4.2. Nest-2.11.1 allowed rules to be rotated around the central vertical axis, giving

4 rotations for each cubic rule, and 6 for each hexagonal rule. When the rules are compared

to the local environment, if any rotated version of the matches then the (rotated) rule is

applied in the position that it matched.

Allowing rotated rules to match during a simulation effectively removes an agent’s ability

to discriminate between different global directions. Nest-2.11.1 allowed rotations around

the Z-axis only. Nest-3.0 extends this to also allow rotations through the X- and Y -axes.

Furthermore, specific sets of rotations can be used, giving the user complete control over

which types of global directional fields the agents can sense. The most obvious uses of this

feature are enabling the following:

Internal Compass By disabling all rotations around the Z-axis, an agent has the ability

to discriminate its rotation with respect to the ‘up-down’ axis, effectively providing it

with an internal compass[88, 73, 162].

Gravity By disabling rotations around the X- and Y -axes, the agent is given the ability to

4.2 Abstract Stigmergic Improvements 72

(A) (B)

Figure 4.2: To create the structure above, all rules above must be present within the agent’s
rule set. However, if rotated versions of rules are allowed to match local envir-
onment configurations, only the rules in A are required, at the very beginning
of the simulation. Each rule in B is a rotated version of the final rule in A.
Using rotated rules allows a helix around a central column to be built using
effectively only 4 rules, rather than 10.

sense its rotation with respect to the ‘ground’1, or in other words a sense of what is

‘up’ and what is ‘down’: gravity.

4.2.4 Agent Behaviour

An important property of any agent-based system is the relationship between the autonom-

ous entity and the environment in which it is placed, and more specifically how the agent

moves, how the agent senses and most importantly how the agent modifies that environment.

Nest-2.11.1 operates by selecting a single empty location, at random, and matching

rules against that neighbourhood during each simulation cycle. The agent in this simulation

has been reduced to a single zero-dimensional point of activity within the lattice. If actually

considered as an agent, its movement behaviour is best described as ’warping’ instantaneously

from one part of space to another, without consideration of the constraints of actual physical

travel. This single agent warping is adequate for investigating the behaviour of very simple

stigmergic systems, and in fact sufficient for modelling a strictly sematectonic (see Section

2.3.4) stigmergic system. However, this implementation of agents does not allow designers

1There is no actual surface within the simulation which could be considered either literally or analogous
to the ground in reality. However, in specific simulations a ‘ground’ could be emulated with suitable choices
for valid rotations along with the presence of a pre-generated surface of bricks.

4.2 Abstract Stigmergic Improvements 73

to effectively explore other important aspects of stigmergic systems within a more realistic

multiagent setting.

In the new system the user has the option of using any number of agents, each with a

unique, individual position within the building lattice during the simulation, more accurately

implementing the notion of a ‘swarm’[17]. This location information is the simplest example

of individual agent state, and experimenters are free to extend the system as they see fit.

One possible extension would be storing an agent’s orientation, which could be implemented

by dynamically determining which rule rotations to consider based on this internal state. In

general, the agents now have the opportunity to modify their behaviour based on individual

internal and/or external persistent state.

A secondary benefit of maintaining distinct agent instances is the possibility of allowing

agents to detect not only bricks but also other agents within their local environment, and

modify their behaviour accordingly[76]. This could be as simple as a preference to move

towards areas of a particular agent density. A more sophisticated enhancement of the agents

might allow individuals to detect aspects of other agents’ internal states. Such enhance-

ments are beyond the scope of this investigation, but they are nevertheless relatively trivial

extensions to the current agent model.

Agent Movement

Furthermore, the movement of the agents can be constrained in a variety of ways. For

example, agents can be restricted in their movement to unoccupied cells adjacent to the

current cell, rather than mysteriously reappearing at the other side of the architecture.

Another interesting movement strategy would constrain agents to positions where they are

adjacent to a previously-placed brick – on the ‘surface’ of the architecture.

Controlling the areas around the architecture which are available for construction to take

place is a potentially very important aspect of simulations where external factors, such as

gravity or the position of the sun, strongly influence the construction behaviour, or where

construction is not entirely deterministic. In these situations, movement constraints can

be used along with internal states to influence the building behaviour and produce a more

4.2 Abstract Stigmergic Improvements 74

realistic simulation.

Any positioning constraint may be realised within Nest-3.0 simulations. It is hoped that

the ability to control this, along with the possibility of internal state within agents, will

enable the investigation of much richer swarm systems without increasing the complication

of the individual agents or the fundamental mechanisms under which the system operates.

Pheromones

Another method of behaviour control seen frequently in natural insect colonies and related

artificial swarm systems is the use of deposited pheromones to guide agent movement[7,

17, 29]. Ant Colony Optimisation (ACO)[50] exploits positive- and negative-feedback using

deposits of virtual pheromones to search for solutions to problems which can be expressed

as path optimisation problems. In general, pheromones guide the movement of agents,

attracting them towards stronger sources: positive feedback is created by allowing agents to

reinforce the strength of the pheromone along that path, while the slow decay of pheromones

into the environment produces negative feedback and reduces the likely that poor solution

paths will be selected.

Within the context of the Nest system, pheromones could be placed in the environment in

conjunction with the placement of bricks of certain colours. Pheromones on recently-placed

bricks could be used to encourage further building at that site, mostly likely resulting in

structures with elongated features. Alternatively, the presence of pheromones could discour-

age building behaviour at those sites, thus prompting agents to build uniformly around the

architecture and produce a more even, symmetrical structure.

While Nest-3.0 does not directly provide pheromone-based agent control, the flexible

architecture can easily accommodate this as a new feature. Internally, pheromones could be

easily implemented as a simple, floating-point value within each cell of the lattice for each

type of pheromone possible within the system. This contrasts with the use of discrete values

for cell values (EMPTY and the various brick colours). The simulation system itself should

then propagate the values to surrounding cells.

4.2 Abstract Stigmergic Improvements 75

4.2.5 Architecture Modification - Building and Excavation

While the original system allowed agents to only place bricks in empty locations, Nest-3.0

features the ability to remove bricks as well as place them in the structure. This allows

the investigation of excavated structures as well as those built in free space. Furthermore,

it allows Nest-3.0 to implement a generalised structural modification model, in which rules

simply define arbitrary modifications of any type – placing bricks, removing bricks, or even

modifying bricks in place – to local environments they match against. When a rule matches

the environment around an agent, that location within the lattice is simply changed according

to the state of the cell designated within the rule as the build cell.

The ability to remove bricks as well as place them dramatically increases the space of

possible rule sets which can be realised within the lattice swarm system, and also enables

the implementation of behaviours which require modification to existing structures, such as

the design of error correction mechanisms. This could also be used in the construction and

dismantling of temporary structures which guide the further construction of the architecture.

It may even be possible to develop non-deterministic algorithms which used constructive and

destructive rules balanced in an equilibrium which ensured a certain overall form is present

whilst the construction of the structure on a finer level is constantly in flux.

Just as the sensing envelope can be modified, the cell in which the local environment

is modified after a rule is selected to fire can also be relocated. Nest-2.11.1 required that

the agent place the brick in the same location as the agent, but when excavation is allowed,

this seems counter-intuitive: for an agent to remove a brick, it must be within that brick,

and if an agent can be within a brick it would seem to be able to move about within solid

matter. This is solved by allowing the agent to modify a cell within the local neighbourhood

other than the one it currently occupies. By allowing this flexibility, a ‘sensible’ model of

excavation can be produced within a lattice swarm system.

These features extend the constrained version of environmental sensing and modification

present in the original system into a more comprehensive stigmergic environmental modific-

ation model, where there is no qualitative difference between ‘building and ‘excavating, and

algorithms can be defined which feature both behaviours.

4.2 Abstract Stigmergic Improvements 76

4.2.6 Rule Matching

Fundamentally both the Nest-2.11.1 and Nest-3.0 systems are simple rule-matching engines.

In developing Nest-3.0 , the format of the rules and the way in which they can be matched

has been greatly extended.

Just as the region of the environment which the agent can sense is now free to be any

shape, rules can also be of dimensions other than the immediate local environment around

the agent’s position.

Brick States

It is now possible to ignore the state of a cell, or to constrain the rule to match only when

the cell in that region is a member of a specified set of states (colours). This gives an agent

the ability to ignore parts of the local environment when necessary, and can help produce

simpler and more flexible rule sets. The number of different states a cell can be in has also

been increased from Nest-2.11.1 ’s 4 to a virtually unlimited number (232 states)

Probabilistic Matching

A final rule-matching feature which increases flexibility is the probabilistic matching of rules

to local configurations. Each cell within the rule (be it a brick or empty space) is given a

real number between 0 and 1, and when the cell is compared to the corresponding region

in the local environment, a random number between 0 and 1 is generated and compared to

this probability factor.

If the random number generated is below the probability factor, then the cell in the

local environment must match the constraints for that cell if this rule is to be allowed to

fire. However, if the generated value is above the probability factor, the cell is ignored and

treated as if it was successfully matched. In this way, higher probability factors can be

assigned to cells where it is more important that an accurate cell match is made during the

rule matching process,

4.3 Implementation Overview 77

4.3 Implementation Overview

In this section the specific details of the implementation of Nest-3.0 are discussed, including

the languages and tools used and an overview of the major components of the system.

4.3.1 Programming Languages and Libraries

Nest-3.0 has been developed using the high-level object-oriented scripting language Ruby2,

along with some C/C++ and OpenGL3. Each of these tools brings important features to

the system as a whole.

All the software libraries and components are multi-platform and open-sourced, allowing

the simulation to run under any operating system with a C++ compiler and an available

OpenGL library.

Datastructure Manipulation in C++

The underlying datastructures have been implemented as C++ objects. C++ compilers are

available for almost every hardware platform in existence, so this represents a solid basis

for the core of a multi-platform application. A second but equally important benefit is the

speed at which compiled C code runs. All of the functions which compare cell contents and

local neighbourhoods are written at this level.

C++ represents the most effective choice for producing compiled and therefore fast code,

whilst still maintaining platform independence. If speed is critical, the next step would be

to implement functions using Assembly Language code, but at such an extreme low level

instructions become processor-specific and platform independence is easily lost.

This C++ code can be compiled using most common compiler systems, such as the GNU4

gcc compiler and make utility. It contains no references to platform-specific header files, and

since no filesystem code is present there are no platform dependencies in the entire low-level

module. The SWIG5 (Simplified Wrapper and Interface Generator) automatically creates

2http://www.ruby-lang.org
3http://www.opengl.org
4http://www.gnu.org
5http://www.swig.org

4.3 Implementation Overview 78

an additional C++ file Nest wrap.cpp, providing wrapper functions allowing the C++ data

and methods to be called from the Ruby scripting language. The makefile required to

compile the codebase is generated using a Ruby tool named extconf, which automatically

ensures that paths to the local Ruby libraries are inserted correctly within the compilation

process.

High-Level Application Logic in Ruby

While C++ produces optimised and fast code, the tasks a programmer must engage in to

develop complex applications are often laborious and lead to the introduction of numerous

bugs. For example, manual management of memory using pointers is a powerful tool, but

as such it is very easy to “shoot yourself in the foot”6 with it.

Instead, higher-level languages have recently become very popular by providing easy

access to commonly used data structures such as lists and hashes, and powerful programming

constructs such as introspection and dynamic binding. These languages have been around

since the birth of the modern Unix system in the form of shell programming languages such

as sh, bash and csh, and these were traditionally used to produce scripts to ease system

administration by automating the execution of sequences of common commands. These days

popular scripting languages include perl7, Python8 and recently, Ruby.

These languages are typically simple to read and can be used to produce solutions to

problems in less time than developing using lower-level languages like C++. They are

also typically interpreted rather than compiled. Because of this, they traditionally run at

speeds which are orders of magnitude less than the equivalent compiled code. However,

as computer hardware grows faster, this difference in speed is increasingly less significant,

and the difference in development time due to the sophisticated programmatical constructs

which are available outweighs any performance loss. The removal of the compilation step

also makes it trivial to add new functionality at any point during the program’s lifespan.

6See http://burks.brighton.ac.uk/burks/language/shoot.htm for some anecdotal-yet-accurate comparis-
ons of common programming languages and how they compare in terms of “shooting yourself in the foot” –
simple errors with disastrous consequences.

7http://www.perl.org
8http://www.python.org

4.3 Implementation Overview 79

Ruby was selected for this project over the other scripting languages available because of

its consistent object model (compared with Python and Perl), dynamic typing and powerful

built-in datastructures. These are important features which form the basis of the flexibility

to plug in different geometry implementations without requiring changes to the application

logic, simulation system and other high-level system components. Ruby can load and use

extensions written in C++ and existing C++ classes can be modified and extended within

the scripting language. Ruby also has a very shallow learning curve, and most programmers

can become fluent within a few hours of first coming into contact with it.

The C++ objects have been augmented with Ruby code to perform high-level operations

such as loading and saving files, generate brick orderings and extracting rule structures from

the architecture itself. The algorithm extraction implementation and other architecture

manipulation code is written entirely in Ruby. The user interface logic is also written in

Ruby, making calls to the underlying OpenGL extension bindings available on each platform.

Data Visualisation in OpenGL

Because the structures being manipulated within the Nest-3.0 system are three-dimensional,

it is appropriate that they be displayed in such a manner. OpenGL is an industry-standard

library for displaying 3D scenes, and implementations exist for all common software plat-

forms. The actual OpenGL library is implemented in C but similarly to the custom data-

structure extension wrapper produced by SWIG above, wrappers exist which allow OpenGL

commands to be executed from within a Ruby script.

The GLUT (OpenGL Utility Toolkit), which assists in implementing most common 3D

rendering tasks, along with providing support for application menus and user interaction, is

also used in the same manner.

The Ruby user interface implementation is separated into two loosely-coupled modules:

the GLArchitectureDisplayer and the GLUTViewer modules. The GLArchitectureDisplayer

consists of raw OpenGL function calls required to draw an architecture, cell information and

basic editing controls such as the cursor (see Figure 4.3), but strictly contains only the

essential code to produce an OpenGL display as a Nest-3.0 structure. The GLUTViewer

4.3 Implementation Overview 80

Figure 4.3: An alternative view of a structure, using the GLUTViewer display system. The
cursor is shown as a highlighted green wireframe cell, with an arrow indicating
which direction is ‘NORTH’. The panel in the lower-right of the screen shows
the information for the selected Cell. In this screenshot, Cells are displayed
using the ordering and encoded values, rather than a solid colour.

module implements the interface ‘sugar’, such as overlaid windows to display information

about selected cells, and mechanisms to allow the user to interact with the structure using

the keyboard. This strict separation means that the GLArchictureDisplayer can quickly

be inserted into any other user interface toolkit capable of rendering an OpenGL scene (such

as Fox9), or even translated back into C code.

4.3.2 System Architecture

Internally the Nest-3.0 simulation system is split into 5 software modules, as shown in

Figure 4.4, and notionally into 3 layers10. The Model layer is responsible for maintaining

the underlying datastructure. It contains the hexagonal and cubic lattice implementations,

primarily written in C++.

The Controller layer holds the logic and algorithms required to manipulate the data from

a user interface, and also provides the interface with information regarding the data. For

maximal flexibility – especially during algorithm prototyping – the modules within this layer

9http://www.fox-toolkit.org
10The M–V–C pattern of design employed here is commonly advocated as a powerful and important

programming methodology, emphasising flexibility, extensibility and future maintainability of software code.
For more information about object-oriented software design, refer to http://ootips.org/mvc-pattern.html

4.3 Implementation Overview 81

Simulator
Algorithm

Engine

Graphical User Interface

Architecture
Editor

Cubic
Architecture

Hexagonal
Architecture

Agents

M
od

el
V

ie
w

C
on

tro
lle

r

C
++

O
penG

L
Ruby

Figure 4.4: An overview of the composition of software modules within the Nest-3.0 sys-
tem.

are written entirely in Ruby.

Finally the View layer provides the user with an intuitive representation of the data along

with feedback as the data is modified by either the user or internal processes. Ruby bindings

to system-level OpenGL libraries are used to implement this module.

Architectures

The Architecture modules contain the code specific to maintaining architectural data, in-

cluding maintaining cell relationships, extracting local neighbourhoods from the architecture

and matching local environments to rules, saving and loading architectural and rule data

and many other functions which are required to model the architecture.

One of the major problems within the original system was trying to support cubic and

hexagonal architectures in both 2 and 3 dimensions by one single software core. This is

where use of a better object-oriented implementation, along with some of the other dynamic

4.3 Implementation Overview 82

code capabilities of scripting languages, allow greater flexibility than previously available in

Nest-2.11.1 .

Within these modules, specific implementations for cubic and hexagonal architectures are

present, each providing a common interface to the rest of the system such that new architec-

ture types can be implemented and used in experimentation without requiring modification

of the rest of the software.

Simulation

The Simulation module contains general, high-level code for running simulations using

the various different types of architecture available. The implementation for running and

maintaining simulations, agents and agent states is found here. The implementation of this

module is described in Section 4.7.

Algorithm Engine

This software module contains code for computationally manipulating architectures and

rules, the results of which can be displayed graphically to the user. The functions provided

by this module are described in detail in Chapter 5, and will not be discussed further here.

Architecture Editor

The module acts as a controller system between the Graphical User Interface and the un-

derlying data, and enables the user to directly modify structures using a three-dimensional

cursor and commands to manipulate the view upon the structure. This component ensures

that only valid data (brick values, orderings and so on) are used, and provides feedback

about the architecture, rules and cells.

Graphical User Interface

The GUI provides the user with a friendly means of interacting with both the architectural

data and the simulation parameters of the system. Architectures which are being both ed-

ited and produced via simulation are displayed in 3 dimensions using the standard OpenGL

4.4 Implementation Details 83

Figure 4.5: A simple architecture, first seen in Figure 4.1, after processing by the Algorithm
Engine. The viewer has been switched to rule display mode, in which the build
cell is highlighted, neighbourhood cells within that rule are shown dimmed,
and unrelated cells are transparent.

library. As demonstrated in Figures 4.1 and 4.5, both architectures and rules can be dis-

played, rotated and modified using this interface, and the results of simulations displayed

either in realtime or once the simulation has completed either a given number of cycles or

the architecture contains some number of bricks.

4.4 Implementation Details

4.4.1 System Objects

The simulation system is described within the implementation code as a structure of related

objects, whose functionality can be extended and modified as required. Wherever possible

functionality is reused to avoid duplication and ease modification of the system. The funda-

mental objects currently in use are:

Architectures store details of an arrangement of Cells, with methods to rotate architec-

tures, extract local neighbourhoods from around Positions and match against Rules.

4.4 Implementation Details 84

Rules A subclass of Architecture, basically just a small arrangement of cells which is

matched against a neighbourhood within the structure being built. It also contains

probability information and statistics. The inherited match function may be extended

to include per-cell probabilistic matches.

Cells stores all information about a particular location within the lattice, such as the type

and colour of any brick present (or allowable in the case of Rules).

Agents represent each individual agent with the system, storing its position and any other

individual state information (flags, individual rules, etc).

Positions describe a location within an architecture. One of the largest problems with

the original simulation was trying to develop some universal way of referencing cell

positions between both cubic and hexagonal lattices. This class is sub-classed by all

Architecture implementations in order to provide a single interface to positioning.

4.4.2 Cells, Bricks and States

The abstract model of space used here divides the environment into discrete cells, modelled

internally using Cell objects. Each Cell has associated with it a state. Most often this

state is used to determine if a brick has been placed in this cell or not. It should be noted

that hereafter a brick is simply a Cell object which is not empty, or in other words, a Cell

object whose state is not EMPTY, but instead RED, BLUE or in general any other ‘colour’.

Cell Matching

The state of each single Cell is encoded into a fixed-length bit representation, with a single

bit representing the presence of one particular state. As shown in Table 4.3, the bit sequence

for a single cell can encode a number of distinct states, and this sequence of bits can be easily

transformed into a simple integer number. Because a single bit within the array encodes to

a single state, we can use multiple set bits to encode a cell within a rule which can be in

any number of states (see Table 4.1). This is achieved by matching the value of this Cell

against the target Cell using a binary OR function rather than a straight comparison.

4.5 Cubic Geometry 85

State EMPTY RED BLUE YELLOW GREEN ORANGE Value
Bit 0 1 2 4 8 16

Value 0 1 0 0 1 0 = 9

Table 4.3: Multi-state matching using Bit Arrays

State EMPTY RED BLUE YELLOW GREEN ORANGE Value
Bit 0 1 2 4 8 16

Rule Cell 0 1 1 0 1 0 11
Target Cell 0 0 0 0 1 0 8

Result of OR 0 0 0 0 1 0 8

Table 4.4: An example of bit-setting to enable bricks to match against multiple values.

A match is determined using the following boolean function:

match(cellrule, celltarget) = (cellrule | celltarget) = celltarget (4.1)

For example, a rule cell configured to match against RED, BLUE or GREEN target cells is

shown in Figure 4.4.

4.5 Cubic Geometry

The cubic geometry implementation featured in Nest-3.0 is implemented using a simple

array structure, with cells referenced absolutely using a simple (x, y, z) coordinate system.

The index of the cell (x, y, z) within the array is given by the function

index(x, y, z) = x + (y ×XSIZE) + (z ×XSIZE × Y SIZE) (4.2)

where XSIZE is the total size of the architecture along the x-axis, and Y SIZE is the

length along the y-axis. Indexing of a 3× 3× 3 cube is shown in Figure 4.6.

4.5.1 Matching Neighbourhoods using Bit Arrays

In order to match rules against neighbourhoods within the architecture quickly and effi-

ciently, the cubic implementation maintains two representations of the structure within an

4.5 Cubic Geometry 86

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

18 19 20

21 22 23

24 25 26

z

x

y

Figure 4.6: Indexing of a three-dimensional cubic structure. The flat, planar layout on the
right is used in following sections to clearly display 3D architectures in two
dimensions.

Architecture (and therefore also in a Rule, since it is a subclass of Architecture). As

described above, an element in the array is used to store the Object data for each indi-

vidual Cell. However, matching rules against local neighbourhoods using this indexed array

requires the comparison of each cell in a separate operation.

By maintaining a binary representation of the architecture, we have the means to com-

pare architectures using a format – the integer value produced by the bit array – which can

be manipulated very efficiently by the underlying processor. While keeping the two repres-

entations synchronised incurs some overhead, rules are matched against neighbourhoods far

more frequently than the central architecture is modified by a rule being fired during any

simulation run.

As an example of the reduction in computation, when comparing a neighbourhood of

cubic cells, the index lookup function (Equation 4.2) must be performed 54 times (27 times

for each of the neighbourhoods being compared), and the integer comparison of cell values

must be performed 27 times, resulting in 27 + 54 = 81 operations at the highest level

of implementation. The index lookup function itself consists of three multiplications and

two additions, giving 27 + (54 ∗ 5) = 297 integer operations which must be performed for

each neighbour match. In contrast, if the neighbourhood is reduced to a single integer, the

processor only has one operation to perform during each match. This comparison operation

is performed a× r× c times during a simulation run, where a is the number of agents in the

4.5 Cubic Geometry 87

Cubic Rotations
0: no rotation 8 : xxyyy 16 : z
1 : x 9 : xxx 17 : zx
2 : xy 10 : xxxy 18 : zxx
3 : xyy 11 : xxxyy 19 : zxxx
4 : xyyy 12 : xxxyyy 20 : zzz
5 : xx 13 : y 21 : zzzx
6 : xxy 14 : yy 22 : zzzxx
7 : xxyy 15 : yyy 23 : zzzxxx

Table 4.5: A listing of the 24 valid cubic rotations, by the number of rotations around each
axis. For example, xxy indicates the cube is rotated around the x-axis, then
once again, and then around the y-axis.

simulation, r is the number of rules in the rule set, and c is the number of cycles, and so a

reduction of computation of this magnitude is clearly of significant benefit.

The number of bits required to store a region of cells is given by X × Y × Z × S, where

X,Y and Z are the sizes in each respective dimension, and S is the number of possible states

each cell could hold. We must therefore fix the number of states available in the simulation

when the build lattice is first created. It is important to note that this number can be very

big; for a 3 × 3 × 3 rule with 20 possible states, the number of bits required is 540. Even

on the most modern processors, the largest number than can be stored as a single integer is

only 64 bit long. For this reason, we have used a specialized BitVector extension11 which

is capable of manipulating bit arrays of lengths up to 232 bits, which is for our purposes

effectively unlimited.

4.5.2 Rotation of Cubic Structures

As seen in Table 4.2, there are three axes of symmetry for any cube. A cube can be rotated

to any of four positions around each of the x, y and z axes, giving a total of 24 unique states.

The number of unique rotations is derived from the fact that a cube has 6 square faces, and

each of those faces when facing upwards on the cube can then be rotated around the centre

of the face 4 times, and thus 6× 4 = 24. These unique rotations are shown in Table 4.5.

Intuitively, some rotations might seem to be missing from this list, but in fact they are

11BitVector is written by Steffen Beyer and available at http://www.engelschall.com/u/sb/download/

4.5 Cubic Geometry 88

Y
ZY Z

Z X

a)

b)

X

(arrow hidden)

Figure 4.7: Rotational Equivalence. Cubes a) and b) are initially identical. Cube a) is
rotated once through the y-axis, and then once through the z-axis. Cube b) is
rotated once through the z-axis, and then once through the x-axis. Both result
in identical orientations. It is important to note that the axes do not rotate
with the cube.

simply equivalent to already present rotations. For example, the rotation yz is identical to

the rotation zx, yyz results in the same overall rotation as zzx, and so forth. This can be

clearly seen in Figure 4.7.

4.5.3 Rotating Architectures using Index Mapping

Rather than actually transform the architecture in place to match a rotated set of cells, it

is simpler and faster to redirect coordinate references for one cell to the cell which would be

in that position if the architecture was actually rotated. This can be achieved by developing

a set of mappings between rotated indexes and base indexes. A simple example of this is

shown in Figure 4.8.

The Cell which was at index 0 has moved to index 2, Cell 6 has moved to index 0,

and so forth. The value of a cell (x, y, z) after architecture rotation is now determined by

first calculating the temporary index from the coordinates (see Equation 4.2), and using the

value at that temporary index within a mapping array (far right in Figure 4.8) as the index

of the actual cell value within the original array.

The functions which provide these index transforms for cubic architectures of size s are

given in Figures 4.9, 4.10 and 4.11. It is also important to note that all division in these

equations is integer based, and no fractional values are present at any point within the

4.5 Cubic Geometry 89

6
0

3
1

0
2

73 44 15

86 57 28

a
0

b
1

c
2

d3 e4 f5

g6 h7 i8

g
0

d
1

a
2

h3 e4 b5

i6 f7 c8

Original Rotated Index Transform
Mapping

a =

{
s if a = 0,

(i + 1) mod s otherwise.

RotateZ2D(i, s) = (s× a)− i mod s2

s
− 1

(4.3)

Figure 4.8: An illustration of cell index rotation through the Z axis on a 3× 3× 1 (‘2D’)
matrix. Using the first as an example, each element of the transform array can
be read as “when rotated through Z once, the cell at index 0 has the value of
the cell originally at 6.”

expression. For instance, 1
2

= 0, remainder 1. This is important, and is made clear by the

absence of otherwise-obvious factor reductions, such as the presence of (s2)× i
s2 in RotateZ.

In this case, (s2)× i
s2 cannot be reduced to

(
(s2)×i

s2 = i
)
.

These equations are derived by carefully considering the movement of cell positions in

terms of offsets based on the architecture size. For instance, considering the 2D example in

Figure 4.8, a temporary index a is created which represents the ‘column’ of i (its position

on the X axis, in other words). Multiplying this value by s, the size of the architecture side,

transforms this ‘column’ value into a corresponding ‘row’ (i.e. Y axis) value. For example,

if i = 6, a = 0 and a × s = 0; this tells us that whatever was in position 6 originally will

appear somewhere in the top row.

The rest of the terms in the following equations perform similar functions. For instance,

in Figure 4.11, the a component steps our rotated index along the Y plane of the architecture

by jumping in increments of s. The (s2) × i
s2 component serves to increment through the

Z planes by jumping by s2 (This effect can be inferred by comparing it to the equation in

Figure 4.8). The −1 term takes into account our indexes begin at 0 rather than 1.

Since the size of the rules is known and does not change while the simulation is running,

these index redirection matrices can be calculated in advance, avoiding the time-consuming

4.5 Cubic Geometry 90

a0 b1 c2

d3 e4 f5

g6 h7 i8

j9 k10 l11

m12 n13 o14

p15 q16 r17

s18 t19 u20

v21 w22 x23

y24 z25 @26

g0 h1 i2

p3 q4 r5

y6 z7 @8

d9 e10 f11

m12 n13 o14

v15 w16 x17

a18 b19 c20

j21 k22 l23

s24 t25 u26

6
0

7
1

8
2

153 164 175

246 257 268

3
9

4
10

5
11

1212 1313 1414

2115 2216 2317

0
18

1
19

2
20

921 1022 1123

1824 1925 2026

Original Rotated

Index Transform Mapping

RotateX(i, s) =

((
i

s
mod s

)
+ 1

)
× s2 −

(((
i

s2

)
+ 1

)
× s

)
+ (i mod s) (4.4)

Figure 4.9: The mapping and function to produce indexes rotated through the X-axis for
cubic architectures of size s.

a0 b1 c2

d3 e4 f5

g6 h7 i8

j9 k10 l11

m12 n13 o14

p15 q16 r17

s18 t19 u20

v21 w22 x23

y24 z25 @26

s0 j1 a2

v3 m4 d5

y6 p7 g8

t9 k10 b11

w12 n13 e14

z15 q16 h17

u18 l19 c20

x21 o22 f23

@24 r25 i26

18
0

9
1

0
2

213 124 35

246 157 68

19
9

10
10

1
11

2212 1313 414

2515 1616 717

20
18

11
19

2
20

2321 1422 523

2624 1725 826

Original Rotated

Index Transform Mapping

RotateY(i, s) = (i mod s)×
(
s2

)
+

(((
i

s
mod s

)
+ 1

)
× s

)
−

(
i

s2
+ 1

)
(4.5)

Figure 4.10: The mapping and function to produce indexes rotated through the Y -axis for
cubic architectures of size s.

4.5 Cubic Geometry 91

a0 b1 c2

d3 e4 f5

g6 h7 i8

j9 k10 l11

m12 n13 o14

p15 q16 r17

s18 t19 u20

v21 w22 x23

y24 z25 @26

g0 d1 a2

h3 e4 b5

i6 f7 c8

p9 m10 j11

q12 n13 k14

r15 o16 l17

y18 v19 s20

z21 w22 t23

@24 x25 u26

6
0

3
1

0
2

73 44 15

86 57 28

15
9

12
10

9
11

1612 1313 1014

1715 1416 1117

24
18

21
19

18
20

2521 2222 1923

2624 2325 2026

Original Rotated

Index Transform Mapping

a =

{
s if a = 0,

(i + 1) mod s otherwise.

RotateZ(i, s) = (s× a)− i mod s2

s
+ (s2)× i

s2
− 1

(4.6)

Figure 4.11: The mapping and function to produce indexes rotated through the Z-axis for
cubic architectures of size s.

repetition of the above calculations. Following each of the rotations listed in Table 4.5,

transformation matrices are constructed incrementally by reapplying transform functions to

existing rotation matrices. The xxx rotation index matrix is created by first generating the

x rotation matrix using the RotateX function (Equation 4.4), then creating the xx matrix

by applying RotateX to the x matrix, and finally a third iteration of RotateX to produce

the rotated index matrix for three rotations around the X axis. Other rotation combinations

are produced in a similar manner.

Just as a bit array can be used to represent the contents of an architecture for fast

comparision, bit arrays representing all valid rotations of each rule (up to 24, depending on

simulation parameters) are generated and cached within each Rule object, indexed in an

array as in Table 4.5. In this manner, rotated versions of each rule can be compared simply

by look-up, and no calculations need be performed on the Rule during the rule-matching

cycle of the simulation.

4.5 Cubic Geometry 92

def Architecture.setFromInt(int)

if int == 0 # special case: BitVector doesn’t like ’0’
fillWith(Cell::Nil)

else
numBricks = @xsize*@ysize*@zsize
bitVectorSize = numBricks*Cell::NumTypes
tempBitArray = BitVector.new_from_int(int, bitVectorSize)

tempBitArray.resize(bitVectorSize)

numBricks.times { |x|
@cells[x] = Cell.new(tempBitArray.chunk_read(Cell::NumTypes,

x*Cell::NumTypes))
}

if @bitArraysEnabled
@bitarrays[0] = tempBitArray
updateBitArrays() #recalculate all of the rotated bitarrays

end
end

refreshCellCoords()
initBoundingBox()
updateBoundingBox()

end

Figure 4.12: Ruby code from the cubic Architecture implementation, which converts a
large integer value into a series of Cells within a cubic lattice.

4.5.4 File Format

The cubic architecture implementation takes advantage of the ability to convert a neighbour-

hood of arbitrary size into a bit array and subsequently into a single integer number, when

saving and loading structure data. If we are given the original dimensions of the architecture

and we have this (very large) integer value, we can reconstruct the original cell lattice.

A fragment of code from the cubic Architecture implementation is shown in Figure

4.12. This function is responsibly for reloading the large integer value into a BitVector

object, and then extracting sub-sequences of bits to be interpreted as the individual Cell

values. Finally, the bounding box (see Section 4.7.3) is created and the cell coordinates (used

for display purposes only) are created.

4.6 Hexagonal Geometry 93

4.5.5 Summary

Within cubic Architecture objects, Cell data is stored in an array, and methods translating

3D coordinates to array indexes are provided. Furthermore, rotated index matrices are

calculated and cached, allowing fast rotation of the cell data. Finally, bit-array versions of the

structure (and all valid rotations) are generated and cached to enable very fast comparison

of Rules as the simulation runs.

4.6 Hexagonal Geometry

Hexagonal architectures are based upon stacked planes of hexagonal cells. Like squares and

triangles, hexagons tile without gaps, making them ideal as the basis for an abstract discrete

representation of space. Hexagons are present throughout nature, featuring all scales from

microscopic crystal arrangements to macroscopic cells in insect nests.

Unlike cubic architectures, hexagonal structures do not lend themselves to representation

in n-dimensional arrays; the relationship between array elements cannot accurately represent

the relationship between face-adjacent hexagonal cells without a large amount of additional

processing.

It is for this reason that the hexagonal Architecture implementation in Nest-3.0 stores

Cell objects in a graph-like structure. Each hexagonal Cell maintains references to its 6

surrounding neighbours and the Cells above and below, as illustrated in Figure 4.13. The

references are stored in an 8-element array, indexed using direction constants N, NE, SE, S,

SW, NW, UP, and DOWN (internally mapped to integer values from 0 to 7).

Generating a Hexagonal Lattice

Because the hexagonal geometry implementation is a graph, rather than an indexed array, no

coordinate system exists for mapping between discrete locations and the cell data. Instead,

the hexagonal implementation relies directly on the links between cells as shown in Figure

4.13. In other words, rather than incrementing a Z coordinate and using Equation 4.2 to

access the cell data, the links between cells themselves are used to traverse the structure as

4.6 Hexagonal Geometry 94

a:N

b:
NE

f:
NW

c:
SE

e:
SW

d:
S

g:
UP

h:
DOWN

h

e

a

b

c
d

N

g

NE

f

SE SWS NW UP DOWN

0 1 2 3 4 5 6 7

Neighbours

Figure 4.13: Inter-Cell linkage in the hexagonal lattice. Each Cell is linked to the 8
face-adjacent cells – six within the same plane of cells, one above and one
below.

it is stored within memory.

It is therefore crucial that the integrity of these links is maintained; if Cell A links to

Cell B in the UP direction, then Cell B must link to Cell A in the DOWN direction. As the

architecture grows and new Cells are created, care must be taken to ensure that links are

correctly created, since the lattice represents the fundamental spatial universe in which the

architecture and agents will exist and interact.

It is relatively simple to ensure that the Cell linking described above can be performed

automatically and consistently, if the placement of new cells is restricted to locations where

the new Cell will be face-adjacent to existing cells. However this, does not avoid all potential

linking problems.

Consider the situation shown in Figure 4.14, at which point a new Cell is about to be

created in position X. Since all cells are created relative to another, cell X will be created

as a new Cell in the NW direction of Cell 5. It is clear from the visual representation that

Cell X must also be linked to Cell 1, but the only way to algorithmically determine this is

by analysing the shape of the path between Cell X and Cell 1 (via Cells 5, 4, and so on),

4.6 Hexagonal Geometry 95

X
5

42
3

1

Figure 4.14: Closing the loop – a cell placed NW of Cell 5 must also be linked in the SW

direction to Cell 1.

and then determining whether or not that path is reducible to a direct link.

In general the situation is much worse. Upon creation of Cell X, all possible paths

through the graph of Cells must be considered to determine which other Cell objects

might be adjacent to the new Cell and require linking. Clearly this is computationally

unacceptable. Some means of providing the ‘big picture’ must be provided so that linking

of new Cell objects is accurate and consistent.

HyperCells

The cubic spatial representation differs from the hexagonal representation in that by using

a co-ordinate system, the cubic implementation has a global means of addressing individual

cells. Within a graph, such as that used to implement the hexagonal cell structure, there is

no such global addressing system; Cell objects must be found by exploring their neighbours.

It is exactly this which produces the problems illustrated in their simplest case in Figure

4.14. In order to overcome this, we must provide some global addressing system for the

hexagonal graph.

Consider a single plane of hexagonal cells. Each group of 7 ‘real’ cells within the plane

are all linked as ‘children’ to a single hexagonal cell on a plane which exists above this plane,

dimensionally speaking. What we mean by this is that, rather than being linked as an UP

neighbour (see Figure 4.13), it is linked ABOVE. This ‘hypercell’ is the parent of each of these

7 cells, as illustrated in Figure 4.15. The parent hypercells for adjacent groups of ‘real’ cells

are adjacent cells in this ‘hyperplane’. In this way we have a lattice which exists above our

original arrangement of cells.

We can then use this ‘hyperlattice’ to provide a wider view of the architecture to the

4.6 Hexagonal Geometry 96

Figure 4.15: Hierarchies of hypercells are used to define sub-regions within the lattice.

methods that must perform the linking. This is illustrated in Figure 4.16. Whenever a new

cell is created within the lattice, it must be created from a cell with already exists in the

structure. For instance, Cell1.set(N, CELL RED) would create a new cell in the N direction

from Cell1, and set the value of this new cell to be red. What we must ensure is that the

new Cell object is also correctly linked to any other adjacent cells.

Each Cell object maintains a dirToParent property, indicating the real direction in

which the Cell lies directly ‘under’ the parent. Using this direction in combination with the

direction in which we are creating the new Cell, we can determine the hypercell under which

the new Cell should be linked. Since each hypercell tracks all the cells beneath it, we can

then use that information in the hypercell to determine which cells are adjacent and link

them to the new Cell object appropriately.

With some consideration it can be seen that this mechanism relies on the ‘hyperlattice’

being correctly linked; we have simply deferred the original problem. However, the hyper-

lattice has 1
7

of the cells of the original lattice, and thus the task of ensuring valid inter-cell

links has become simpler. Rather than accept this significant reduction in complexity, we

can apply some of the previous logic and produce a much more elegant solution. Since the

4.6 Hexagonal Geometry 97

X
5

42
3

1

X
51

dirToParent = ABOVE

pa
re

ntpa
re

nt

dirToParent = SE

dirToParent = ABOVE

pa
re

nt

NW

N

S

NE

SE

NW

SW

Figure 4.16: Linking hexagonal cells using a ‘Hyper Lattice’.

hyperlattice was created to enable accurate linking within a ‘real’ lattice, we can create

hyper-hyperlattice and exploit the same mechanisms described above to link the hyperlattice

itself, and so on. This hierarchy of hypercell objects extends from the level of the lattice in

which agents and bricks are placed, up until there is only a single ‘hypercell’ at the highest

level, and is illustrated in Figure 4.17.

4.6.1 Rotation of Hexagonal Structures

Hexagonal neighbourhoods have only one axis of symmetry – the z-axis passing through the

central cell. Through this axis, a hexagonal rule can be rotated 6 times. Determining the

Cell data under any given rotation can be found simply by applying a rotation offset to

the original direction constant, and taking the remainder from a division by six (the number

of directions within the rotated plane), as shown in Equation 4.7. Because the directions

valued 0 to 5 are those which lie within the plane (N, NE, SE, S, SW and NW), the rotated index

within this remainder will always lie within the plane.

cellDataIndex(dir, rotatation) = (dir + rotation) mod 6 (4.7)

4.6 Hexagonal Geometry 98

Di
m

en
sio

n
Ba

rri
er

Di
m

en
sio

n
Ba

rri
er

DOWN links

DO
W

N

DOWN links

DO
W

N

DOWN links

'hyper' links

'hyper' links

continues
downwards

parent

(parent)

continues
downwards

continues
downwards

Figure 4.17: The HyperStructure used to construct the interlinked Cell network. The lat-
tice space is expanded through dimensions, each dimension using neighbour-
hood information from the dimension above in order to ensure that inter-cell
links are valid in the final ‘real space’ dimension.

4.6 Hexagonal Geometry 99

30

1

1=4,1,0 : -1 2 -1 6 -1 -1 12002 12001

2=4,6,0 : -1 -1 3 -1 1 -1 12005 12004

6=5,2,0 : 1 -1 5 -1 -1 -1 12017 12016

3=4,5,0 : -1 -1 -1 4 -1 2 12008 12007

4=7,4,0 : 3 -1 -1 -1 5 -1 12011 12010

5=6,3,0 : -1 4 -1 -1 -1 6 12014 12013

Figure 4.18: The initial fragment of an architecture file representing a simple ring of cells.
The header consists of the first two lines, and each subsequent line details a
single Cell object within the structure.

An addition pseudo-symmetry can be created by placing the hexagonal rule ‘on its head’,

effectively inverting the UP/DOWN component of the structure and reversing the planar direc-

tional component. A simple function, shown as Equation 4.8, is used to reverse any direction

within the hexagonal lattice.

ReverseDirection(d) =

DOWN if d = UP,

UP if d = DOWN,

((d + 3) mod 6) otherwise.

(4.8)

4.6.2 File Format

Hexagonal Architecture objects are stored in a simple plain-text file format, which consists

of a simple header and then a series of lines, each describing a Cell within the lattice. An

example of the file which produces the completed ring architecture shown in Figure 4.14 is

shown as Figure 4.18.

The header consists of two lines, detailing first the maximum vertical depth of the lat-

tice in which the architecture is constructed (30 in this case, which is the default for new

hexagonal architectures) and secondly the unique id of the central cell of the architecture.

This cell is used as a point of reference as each of the following lines is parsed and new Cell

objects are created and inserted into the Architecture.

The rest of the file is a listing of value and neighbour information for each Cell within

the architecture. Each line can be separated into three logical segments, delineated as

4.7 Simulation Implementation 100

id = <values> : <neighbours> where id is an integer value, <values> is a comma-separated

list of integers and <neighbours> is a final list of integers. Each of these segments is outlined

below:

id is a unique integer used to identify this Cell object within <neighbours> contents in

the rest of the rule.

<values> = <val>, <order>, <rule> where: val is the integer state information or this

Cell; order is the ordering assigned to this Cell within the whole architecture; and

rule is the id of the rule which placed this Cellobject. Any of these values can be

−1, which indicates an UNDEFINED value.

<neighbours> = <N> <NE> <SE> <S> <SW> <NW> <UP> <DOWN> where each of those val-

ues is the integer id of the cell which is linked in that direction from this Cell. If the

value is −1, then no cell is present in that direction.

4.6.3 Summary

Since the geometry and cell relationships within a hexagonal lattice do not naturally fit with

a coordinate scheme of cell addressing, a graph of linked objects is created to represent this

lattice geometry.

This serves to simplify operations such as rotation of neighbourhoods, but complicates

the creation of the lattice due to the possibility of mis-linked Cell objects within the lattice.

4.7 Simulation Implementation

In this section the details of the simulation aspect of the Nest-3.0 system are described. This

component is responsible for transforming sets of rules back into completed architectures.

The simulation system implemented in Nest-3.0 is actually fairly simple; much of the

required functionality is built into the data structures being manipulated. Only two objects

are present in this part of the system: Simulation and Agent. They are both described in

detail in the sections below.

4.7 Simulation Implementation 101

4.7.1 The Simulation

A Simulation object is a simple container for the information relevant to a single simulation.

It gathers together the rule set, agents and several limiting parameters and wraps them with

a very simple layer of code to enable simple simulation runs to be performed.

Initialisation

The minimum set of parameters required by the Simulation object are:

rule-file the name of a file which contains the rule set to be used by agents in this

simulation.

cycle-limit the maximum number of simulation cycles to be performed before the simula-

tion halts. The default value of this parameter is 1000, meaning that unless specified

otherwise the simulation will halt regardless of progress once 1000 cycles have been

completed.

brick-limit the maximum number of bricks to be built before the simulation halts. The

default value of this parameter is 50, meaning that unless otherwise specified the

simulation will halt once 50 bricks have been placed within the architecture.

num-agents the number of agents to be created within this simulation. This parameter

must be greater than 0, i.e. every simulation requires a single agent.

Given values for these parameters, a Simulation object can be created. As a part of

this process, the build architecture lattice is created (an empty lattice within which agents

are placed and bricks will be deposited during the simulation) and the limit parameters are

set. The file containing the rule structures is loaded and converted to a simple array of

architectures ready for comparison. The required number of Agent entities are created and

given access to the rule data for this simulation. The agents are finally assigned random

locations within the build lattice. The simulation is at this point in a position to start

running

4.7 Simulation Implementation 102

def runCycle()
call the run method for each agent
@agents.each { |agent| agent.run() }

increment the number of cycles executed
@cycles += 1

return true if either of the stopping conditions have
been met
return ((@architecture.numBricks < @brickLimit) and

(@cycles < @cycleLimit))
end

def runSimulation()
@cycles = 0
while runCycle() do
this loop will finish when runCycle() returns false

end

puts "Simulation complete: #{@cycles} cycles, " +
"built #{@architecture.numBricks} bricks"

end

Figure 4.19: The Nest-3.0 simulation run cycle code, implemented in Ruby.

Simulation Run Cycle

The run cycle of the simulation is very simple, since most of the logic is actually present

within the Agents themselves. The code which makes up the simulation run cycle is shown

in Figure 4.19. On a current typical desktop computer12 the simulation runs very quickly,

and the building behaviour of the agents can he difficult to observe in any great detail.

The seemingly-artificial split into two methods shown in Figure 4.19 facilitates interact-

ive simulation from the user interface - by calling the runCycle method rather than the

runSimulation method, a single iteration of agent activity can be processed and the results

displayed immediately.

12At the time of writing an ‘entry level’ PC sports a 2.5 gigahertz processor and 512 megabytes of RAM;
future computers will certainly be more powerful.

4.7 Simulation Implementation 103

Simulation Results

The built architecture can be saved using the same mechanisms present for any Architecture

object. Within this object, each Cell is tagged with the id value of the Rule which caused

the Cell to change value, and also with its sequence number within the overall architecture

construction. This information can be used to replay the simulation and extrapolate the

causal links between the rules at a later date by examining the Rule id information for each

neighbourhood of rules. In this way, all simulation results can be stored within the same

format as is used to hold the architecture information itself, resulting in a single file format

to be maintained.

4.7.2 Agent Implementation

As can be seen in Figure 4.19, the implementation of a simulation run cycle is very generic.

This is intentional, as it allows the behaviour of agents within the simulation to be imple-

mented exclusively within the Agent class. This in turn means that it is trivial to use new

agent implementations without modifying the surrounding simulation implementation. The

only requirement is that the Agent object responds to the run method.

The simple agent behaviour provided within the default Agent implementation is shown

in Figure 4.20. This agent does not maintain any internal state other than position, and

attempts to move into an adjacent empty location. If no empty locations can be found

adjacent to this location, the agent is ‘magically’ transported to another empty cell within

the build lattice. This prevents the agent being left in a location into which it has just built

a brick.

The build method is equally simple: all rules are checked in sequence, and if a rule

matches the current location – the buildMatches(<Cell>) function compares all Cells

except the build Cell, which holds the desired change of value and will necessarily not

match the value in the build lattice – then the Rule is selected for firing. The location value

is modifed according to the value in the build Cell, and this modified Cell within the built

architecture is tagged accordingly.

As mentioned above, each agent is represented by a separate instance of the Agent class,

4.7 Simulation Implementation 104

def run
build()
moveRandomly()

end

def build
@rules.each { |rule|
if (rule.cc.buildMatches(@location))
@location.setValue(rule.buildValue())
@location.setOrder(@simulation.architecture.numBricks)
@location.setRuleID(rule.cc.order())
@location.expandSpaceAround()
break # we only want to match a single rule

end
}

end

def moveRandomly()
create a copy of the array of available directions
directions = @allowedDirections.dup

find a cell in a random valid direction with is empty
until directions.empty?
dir = directions.delete_at(rand(directions.length))
newcell = @location.get(dir)
if newcell != nil

stop if this cell is EMPTY
break if (newcell.value() == CELL_EMPTY)

end
end

if directions.length == 0
this means we couldn’t find anywhere to move, so warp somewhere
@location = @simulation.findEmptyCell()

else
set this agent’s new location
@location = newcell

end

end

Figure 4.20: The Ruby code describing the behaviour of a simple Nest-3.0 agent. This
agent first matches its current location against the rule set, and builds a brick
if a match is found. Secondly it attempts to move into an adjacent empty
Cell object. If no empty cell can be found, the agent is moved to a random
empty location within the structure (‘warping’).

4.7 Simulation Implementation 105

and as such they maintain their own unique location information. This implementation of

agent behaviour does not feature any of the more sophisticated extensions that were outlined

at the beginning of this section. However it is relatively trivial to implement examples of

this behaviour. For instance, Figure 4.21 shows a modification to the movement function

which ensures that the agent only moves to an empty cell where it is in contact with the

surface of a non-empty cell, or in other words moves along the surface of the construction.

The key difference in this modified movement function is the line flagged with ***, which

includes the additional neighbour checking. Within this line a copy of the cell neighbour

array (see Figure 4.13) is created, and Cells are removed from this duplicate if they are

empty. If any Cells remain, there must be a brick adjacent to this Cell and therefore

it is suitable to move to. Similarly the ‘warping’ fall-back has been modified to include

this constraint. It can be seen from the very small change in the code that Ruby enables

extension and modification of agent behaviour in an extremely painless manner.

Additional extensions might modify the build or move methods to check other properties

of the agent’s location, such as the number of agents currently occupying that cell, and modify

its behaviour appropriately.

4.7.3 Simulation Optimisations

Several programming optimisations have been used to improve the performance of the sim-

ulation, by streamlining the computation used in common situations, and reducing the like-

lihood of wasted simulation cycles. These optimisations are outlined below.

Bit Array Matching

As described above, within the cubic implementation, neighbourhood configurations are

reduced to a single integer value for the heavily-utilised matching function. This provides a

dramatic speedup since each individual cell does not need to be located and compared.

4.7 Simulation Implementation 106

def moveAlongSurface()

create a copy of the array of available directions
directions = @allowedDirections.dup

find a cell in a random valid direction with is empty
until directions.empty?
newcell = @location.get(dir)
if newcell != nil
if (newcell.value() == CELL_EMPTY) &&

*** note this additional check ***
(newcell.neighbours.dup.delete_if{|n| n.isEmpty()}.length > 0)
break

end
end

end

if directions.length == 0
this means we couldn’t find anywhere to move, so warp somewhere
@location = @simulation.findEmptyCell()
keep searching until we find a suitable empty cell
while (@location.neighbours.dup.delete_if{|n|

n.isEmpty()
}.length == 0) do

@location = @simulation.findEmptyCell()
end

else
set this agent’s new location
@location = newcell

end

end

Figure 4.21: A modified agent movement function which ensures that the agent is always
in a cell which is face-adjacent (i.e. a direct neighbour) of a cell which is not
empty.

4.8 Future Extensions 107

Agent Bounding Box

Another optimisation present within the cubic implementation is a bounding box, which

restricts agent movement to a confined region of the total build lattice. The region defined by

this bounding box is determined dynamically as construction of the architecture progresses.

As each brick is built, its coordinates are checked against the current bounding box values. In

each direction, if the brick coordinate is equal to either the minimum or maximum coordinate

of the bounding box in that axis, the bounding box limit is expanded to ensure that the

minimum and maximum values are at least one cell less than or greater than the extremities

of construction respectively. If an agent attempts to move to a region outwith this bounding

box, it is denied and an alternative new location within the bounding box must be found.

By maintaining a bounding box, agents within simulations which do not employ surface-

constrained movement behaviours are naturally restricted to a small region of space around

the construction, increasing the likelihood that an agent will encounter a stimulating config-

uration of Cells. This in turn speeds up building behaviour of the simulation as a whole,

reducing the amount of computation required to build architectures of a given size.

There is no bounding box present within the hexagonal implementation, because Cell

objects are only created around the extremities of the construction as it is being built. In

this manner, the architecture as a whole is constantly surrounded by a single layer of empty

Cells by default. The line @location.expandSpaceAround() within the build method in

Figure 4.20 ensures that when a Cell value is modified, enough new empty Cell objects are

created around the current location to guarantee this natural bounding box.

4.8 Future Extensions

Outlined here are some possible extensions to the Nest-3.0 system which could be undertaken

at a later point to improve the flexibility and usefulness of the tool to those who wish to

explore the behaviour of stigmergic systems.

4.8 Future Extensions 108

4.8.1 More Geometries

The cubic and hexagonal geometries supplied lend themselves perfectly to a lattice simula-

tion, because they tile perfectly in two and three dimensions. However, it would be very

interesting to see which structures can be simply expressed using a stigmergic algorithm in

alternative geometries. The next obvious regular shape which provides a space-filling tiling

across the plane is the triangle (or a triangular prism in three dimensions), but this could

be considered a finer-grain version of the existing hexagonal geometry.

Beyond lattices, an implementation of stigmergic systems using a more realistic repres-

entation of space (and therefore an alternative representation of stigmergic rules) would not

only form the basis of a more biologically-plausible model of stigmergy in social insects, but

may give far clearer insights into the effects artificial geometries impose on stigmergically-

constructed architectures. The design of the system architecture (shown in Figure 4.4) is

such that the simulation logic can operate on any new spatial representation which conforms

to a very unrestrictive programming interface.

4.8.2 Agent State

While the capabilities for persistent individual agent state are already present in the Nest-

3.0 system, there is no interface to manipulate this functionality or modify the building or

movement behaviour according to this internal state. The development of such an interface

would therefore be a natural next step in the life of the software.

4.8.3 Pheromones

As with internal states above, while it is trivial to extend the Cell model to accommod-

ate new floating-point state information, and thus support the propagation of pheromones

throughout the environment, there is no interface for specifying and manipulating this in-

formation.

Modifying agent behaviour according to this extended local state would necessitate a

more sophisticated simulation creation interface, in which these advanced agent behaviours

could be specified. This was not developed further as both internal state and advanced

4.9 Nest-3.0 Summary 109

environmental interactions diverge too far from the central topic of this thesis, but remain

intriguing extensions which can doubtless be used to produce very interesting swarm beha-

viour in the future.

4.8.4 Architecture Evaluation

As noted in Chapter 3, some initial attempts at automatic architecture evaluation were

provided in the Nest-2.11.1 system, along with further work on automatic evaluation by

a genetic algorithm in [19, 22]. Since the focus of the Nest-3.0 system is the evaluation

of random stigmergic algorithms, these features are not as relevant to our goals, but the

inclusion of such evaluation mechansims would certainly be interesting from the perspective

of the user.

4.9 Nest-3.0 Summary

The Nest-3.0 stigmergic simulation software has been presented. It supersedes the original

Nest-2.11.1 software developed by Bonabeau and Theraulaz in almost every respect by

providing a multi-platform system for stigmergic investigation. Many of the artificial limits

present in the original software have been effectively removed, and the scope for experiment-

ation dramatically broadened.

The software core upon which Nest-3.0 has been constructed provides a more suitable

basis for further investigation of abstract stigmergic systems than could ever be possible

using the original software, and this was the primary motivation for its inception. It has

also been shown to be easily extensible by end users to provide agent behaviours which

vastly surpass both the original system behaviour and the needs of the remainder of this

investigation.

Chapter 5

Automatic Generation of Coordinated

Stigmergic Algorithms

Overview

At this point, it is useful to review what we have considered thus far, and so refresh the

motivations for this thesis. In Chapter 3 we were introduced to the simple model of collective

stigmergic building behaviour developed by Bonabeau et al.[158, 156] and implemented in the

Nest-2.11.1 software. We also considered the investigations performed using this software,

and the use of both extensive random sampling and genetic algorithms to explore the space

of behaviours this system could exhibit. Finally, the restrictions of this simple model were

highlighted.

Chapter 4 introduced a revised model, designed to overcome the limitations of the ori-

ginal. The Nest-3.0 model included a vastly improved agent model, a generalised rule-

matching system and dramatic increases in the flexibility and extensibility of the system.

An implementation of this model has been presented in the Nest-3.0 software. By consid-

ering which constraints present in the original model can be relaxed, and how this might be

achieved, a greater understanding of how such constraints may influence the range of system

behaviours is achieved.

The purpose of both these systems is for the greater part identical, and is outlined

5.1 Coordinated Algorithms 111

perfectly in [156] – “our goal is to explore the space of possible architectures that

can be generated with a stigmergic algorithm”. These simulation systems simply

serve as tools to enable this exploration.

In this section, the assertions originally made by Bonabeau and Theraulaz[156] regarding

stigmergic algorithms will be described, explored and tested. The notions of coordinated

algorithms and coherent architectures, while mentioned earlier, will be considered in detail

in an effort to further understand these assertions and the behaviour of abstract stigmergic

systems. Most importantly, the shortcomings of these concepts as a means of achieving the

above-stated goal will be explored.

At this point, a new set of concepts – pre- and postrules – are introduced as a more

concrete and powerful means for exploring the potential of abstract stigmergic systems. The

applications and again most importantly the shortcomings of these concepts when used as

tools for exploring stigmergic behaviour are discussed, along with their relationship to the

concepts developed in the original Nest-2.11.1 work. Finally, a roadmap for the further

investigation of stigmergic system behaviour is presented as the basis for the remainder of

this thesis.

5.1 Coordinated Algorithms

In this section we will examine the assertions originally made by Bonabeau and Theraulaz

regarding the conditions necessary for a stigmergic algorithm to produce a ‘desirable’ struc-

ture.

5.1.1 Building Stages

In their original work, Bonabeau and Theraulaz[158, 156] discovered that while abstracted

stigmergic systems such as those modelled using Nest-2.11.1 were capable of producing

interesting and highly-structured architectures, the algorithms which produce such structures

are very rare:

“[We] found a posteriori that structured shapes can be built only with special

5.1 Coordinated Algorithms 112

algorithms, coordinated algorithms, characterized by emergent coordination.”[156]

Here lies their main assertion regarding the behaviour of stigmergic systems of this type

– only algorithms which exhibit this particular coordinated property will produce architec-

tures that are in some way structured. The question of what exactly defines a ‘structured’

architecture will be considered later, but what characteristics are given to define a coordin-

ated algorithm? The following definition is given in [156], and will be used as the basis for

discussion of ‘coordinated algorithms’.

“[At] any given time, there must exist an active set of local configurations that

all trigger the same qualitative type of brick deposit. Let (C1, C2, . . . , Cn) be the

set of all local stimulating configurations, that is the configurations which trigger

the building behaviour (put down a brick) if they are encountered. In order for

the construction to proceed in a coherent way, there must be a succession of a

certain number of qualitatively distinct building states. Let (S1, S2, . . . , Sn) be

the set of these building states. Each of these states is characterized by a subset

of C, C(Sp), with ∪pC(Sp) = C and ∀p1 6= p2, C(Sp1)∩C(Sp2) = �. Considering

each building state Sp, each time a brick is put down, the result gives rise to

one or more configurations ∈ C(Sp), and the construction process may go on

either in a sequential manner (a single configuration allows the agents to put

down a brick – not to be confused with a sequential algorithm), or in a parallel

manner (in this case, several configurations allowing the deposit of a brick are

simultaneously present).

The completion of the building state Sp then corresponds to the appearance

of new configurations ∈ C(Cp+1).”[156]

This compact description is somewhat hard to follow, and so for our benefit it is con-

sidered carefully below from a critical standpoint. At this point we are already familiar

with the components of Nest systems, and so where possible we can use this knowledge to

re-frame some of the more confusing terminology used above and obtain a stronger grasp on

what might be inferred.

5.1 Coordinated Algorithms 113

Coordinated Algorithms, Step By Step

1. “At any given time, there must exist an active set of local configurations. . . ”

The set of local configurations can be defined simply as the set of neighbourhoods containing

one or more bricks around an empty cell. The active set must be those locations in which a

brick could be built next, i.e. those locations where a rule matches the local arrangement of

bricks.

2. “. . . that all trigger the same qualitative type of brick deposit.”

Since the qualitative nature of the construction behaviour is simply the colour of brick to

be placed, it is unclear why at time t only the building of a single type of brick should be

allowed.

3. “Let (C1, C2, . . . , Cn) be the set of all local stimulating configurations, that is

the configurations which trigger the building behaviour (put down a brick) if they

are encountered.”

Set C is the set of rules in this simulation.

4. “In order for the construction to proceed in a coherent way, there must be

a succession of a certain number of qualitatively distinct building states. Let

(S1, S2, . . . , Sn) be the set of these building states. Each of these states is char-

acterized by a subset of C, C(Sp), with ∪pC(Sp) = C and ∀p1 6= p2, C(Sp1) ∩

C(Sp2) = �.”

The collection of rules is divided into non-overlapping subsets, which are termed building

stages or building states. A ‘stimulating configuration’, or rule, may be present in one and

only one stage. This non-overlapping quality must be the ‘qualitatively distinct’ property

mentioned here; it is difficult to see what else it could refer to.

5. “Considering each building state Sp, each time a brick is put down, the result

gives rise to one or more configurations ∈ C(Sp). . . ”

5.1 Coordinated Algorithms 114

Each rule within a specific building stage modifies the environment, creating another set

of local environments, one or more of which are also within that same stage. This is the

essence of stigmergy – actions within the environment modify that environment, leading to

situations where new actions become available. What is said here, however, is that those

new actions must belong to the same stage as the action which occurred previously.

6. “. . . and the construction process may go on either in a sequential manner. . . ”

Only a single new matching local configuration of bricks is created by this environmental

modification, and as such there is only one rule which can fire in this situation.

7. “. . . or in a parallel manner (in this case, several configurations allowing the

deposit of a brick are simultaneously present).”

In this case, the set of local configurations created by this modification matches more than

one rule, so building may continue at more than one location around where the previous rule

fired.

8. “The completion of the building state Sp then corresponds to the appearance

of new configurations ∈ C(Cp+1).”

So if any of the new configurations is not present in Sp, a new state has been entered, and

this state is complete.

9. “Such states are at the root of the modular structures that appear in the

architecture. One may have the two following cases (where Ri denotes the set of

responses generated in state Si):

a strictly linear chain of building states:

S1
R1↓−−→ S2

R2↓−−→ S3
R3↓−−→ S4

a chain of building states that can have recurrent states:

S1

R1↓−−→S2

R2↓−−→S3

R3↓−−→←−−−−−−−−−−−−
R4↑

S4

5.1 Coordinated Algorithms 115

2

X

1

A

B

C

Figure 5.1: A simple set of rules building a coherent architecture. Each rule in this example
can be considered a distinct building stage. If Rule A fires at location X, then
simulating configurations for both rule/stage A and rule/stage B are present
within the system (at locations 1 and 2 respectively.

It is possible and often desirable that an environmental modification produces configurations

which match more than a single building state, as seen with the simple system illustrated in

Figure 5.1, so the strict linearity/cyclicality implied here seem over-constrained.

The informal summary of this definition is provided as follows:

“. . . if one wants a swarm of agents to build a given architecture, one has to

decompose it into a finite number of building steps, with the necessary condition

that the local configurations that are created by a given state and which trigger

building actions, differ from those created by a previous or a forthcoming building

step so as to avoid the disorganization of the building activity. We call such a

building algorithm . . . a coordinated algorithm, because all individuals cooperate

in the current building state at any time.”[156]

This serves to only marginally clarify what still appears to be a fairly vague assertion –

in order to ensure that the construction of the structure does not career out of control, the

causal links between stimulating configurations must be managed in some way.

Furthermore, the notion of building states as described above seems to belie the type of

building behaviour we should expect or even rely upon in a swarm system. If multiple agents

are simultaneously active and modifying the environment around the constructed structure,

5.1 Coordinated Algorithms 116

they will often be constructing elements of the architecture which are not part of a single

building ‘stage’. As is seen in Figure 5.1, agents can be involved in the construction of

distinct ‘stages’, or intuitively distinct elements of the structure, without any compromise

of the resulting architecture. The concept of explicit building states is not entirely without

use, but simply may not be necessary to ensure the production of interesting or desirable

architectures.

Building Stages, Emergent Systems and External Observers

Finally, we must consider how useful the concept of building stages might be as we attempt

to achieve our goal of “explor[ing] the space of possible architectures that can be generated

with a stigmergic algorithm”. At their strongest, Bonabeau et al.[156, 22, 19] assert that

the existence of stages is an indicator that a ‘coherent’ architecture will be built if such a

rule set is used in simulation. However, no means for concretely identifying the presence or

absence of these stages is provided or even suggested:

“Although coordination is an intrinsic property of the algorithm, it is not

obvious to see it in the rule table, and it is often necessary to run the algorithm

to discover the coordination it produces.”[156]

In other words, the behaviour of the system may only be understood once the system

has been observed running. A somewhat more concrete means of identifying such stages is

possible through the generation of a ‘construction graph’[19] (see Section 3.4.1), but despite

this apparent formalisation the concept of building states or stages remains ambiguous, and

their identification only possible during or after simulation.

This is strikingly similar to the position we must adopt with other emergent systems, and

as such brings us no closer to being able to exploit the advantages of a distributed system of

this nature. Clearly we must consider other means of exploring and exploiting the behaviour

of these systems.

5.2 Coherent Structure: Measuring the Value of Architectures 117

5.2 Coherent Structure: Measuring the Value of Ar-

chitectures

The initial work by Theraulaz and Bonabeau on lattice swarm systems[158, 156] was presen-

ted without a satisfactory definition of coherent structure – the particular type of structure

that only a coordinated algorithm can produce. Instead, architectures were evaluated sub-

jectively, and some characteristics of such coherent architectures were outlined:

“The notion of coherent architecture is obviously difficult to formalize. . . a

given coordinated rule table always converges toward architectures that possess

similar global features. . . On the contrary, architectures resulting from successive

simulations using the same noncoordinated algorithm are very dissimilar.”[158]

“This tendency [for noncoordinated algorithms] to diverge comes from the

fact that stimulating configurations are not organized in time and space and

many of them overlap, so that the architecture grows in space without any

coherence.”[156]

It is asserted that some algorithms tend to converge upon one particular architecture,

with individual simulation runs producing variations in the exact structure, but remain

architecturally very similar. For instance, a particular algorithm may always produce a

vertical column of bricks, with planes ‘grown’ perpendicular at intervals down its length,

such as architecture A in figure 5.2. While the exact spacing between planes may vary

between simulations, the structural features are nevertheless striking and always present.

This is a result of “the implicit hand-shakes and interlocks that are setup at every

[building] stage”[156]. On the other hand, uncoordinated algorithms tend to produce struc-

tures which are seemingly random, space-filling and which do not exhibit structural simil-

arity across simulation runs; “algorithms with overlapping configurations yield structureless

shapes, never found in nature”[156].

Thus we must determine the ‘coherency’ of a structure according to the the repetition

of ‘features’ across several simulation runs, and by how ‘natural’ the structure appears to

5.2 Coherent Structure: Measuring the Value of Architectures 118

the observer. The latter criterion is almost certainly a purely subjective judgement by the

observer, but the former – the presence of ‘features’ – might show promise for formalisation.

This is considered more fully in Chapter 9 as part of the final aim of this research.

5.2.1 Existing Nest-2.11.1 Measures of the ‘Coherency’ of Struc-

tures

In order to measure the fitness of structures and apply genetic algorithms techniques to the

generation of random coordinated algorithms, a function attempting to provide a measure

of coherence was devised in [22] and further explored in [19]. The initial fitness function

was based purely on the behaviour of the system during simulation, rather than the archi-

tecture produced. The fitness function was “based on a simple observation: in algorithm

that generate coherent architectures, many micro-rules are used, whereas in algorithms that

generate structureless shapes, one one rule or a few rules are actually used in the course of

the simulation.”[22]

This function is refined to correlate further with observer’s ratings of coherence in [19]

using measures of compacity of the architecture (the number of face-adjacent bricks in the

architecture divided by the total number of bricks) and the complexity of various ‘patterns’

identified in the structure. Because these measures are shown to correspond with the ratings

given by observers to a sample set of architecture, the function is asserted as a satisfactory

measure of meaningful structure within an architecture.

These experiments have been considered earlier (see Section 3.4), and will not be dis-

cussed in more detail here. We have seen in the previous section that the notion of building

stages may not be as robust as one might hope; here we will see that the framework for

considering coherent architectures is similarly subjective, and may not be useful as a tool for

understanding the true behaviour of stigmergic systems.

5.2.2 Architectural ‘Features’

If we consider the two architectures shown in Figure 5.2, we can see they are clearly distinct

from each other. Intuitively, architecture A exhibits a great deal of structure, whereas

5.2 Coherent Structure: Measuring the Value of Architectures 119

A B

Figure 5.2: Architecture A – a set of planes from a vertical column – seems obviously
structured. Architecture B initially appears random and space-filling, until we
consider the regions of empty space defined by the structure.

architecture B appears to feature a large degree of randomness. As observers, we find it

easy to describe A as flat planes projecting from a single column of bricks, whereas B might

be described as a randomly branching tree-like structure.

Based on these descriptions, it follows that we might want any automatic measure of

structure to value architecture A highly, and the same measure provide a significantly lower

value for architecture B. However, what we must question is what really constitutes an

architectural ‘feature’. As indicated in Figure 5.2, if we consider the empty space with

architecture B, rather than the bricks themselves, we can see that a clear feature exists –

corridors of empty space, each a single cell width across at any point. This corridor feature

could be considered equally as ‘natural’[114]1 as the more-obvious structure in A.

It is clear given this insight that our original assessment of the lack of structure in

architecture B was mistaken. While the multi-planar arrangement of bricks in architecture

A might be simpler to describe, particularly in a hierarchical manner, this form of description

cannot satisfactorily capture what it is that makes a structure ‘coherent’, ‘interesting’ and

ultimately ‘desirable’.

1Such corridor structures might even be considered closer to those seen in nature than the nest-like
structures cited in [156], since the insects must live in the free space within the construction, whereas the
Nest model implies that bricks, unlike the cells within real nests, are solid objects.

5.2 Coherent Structure: Measuring the Value of Architectures 120

. . 326

experimental group in tall, narrow frames
(30× 15× 5 cm). After construction, webs were
photographed and partly digitised from a slide
projection with a Wacom digitisation tablet con-
nected to a Macintosh computer. The computer
model was implemented in the object-oriented
computing language SMALLTALK with Smalltalk/
V from Digitalk on a Power Macintosh 8100/80 Av.
The rules we used were derived from (i) observations
of orb web spiders in the lab and (ii) the analysis of
web characteristics.

Since sampling of individuals from the same
simulation run led to non-normal distributed data
because of simulated genetic relationships, we decided
to take only the overall best cyber spider per
simulation run. Therefore, we performed ten simu-
lation runs per frame type (corresponding to those
used for the real spiders, i.e. control and vertical) with
a population size of 24 individuals over 100
generations in each run. The cyber spider population
was subdivided into four semi-separated subpopu-
lations (demes) that exchange emigrants each tenth
generation. The total number of migrating cyber
spiders was distributed to the demes according to the

mean deme fitness. Three characteristics of (both
real and artificial) webs were extracted and analysed
(Fig. 5).

First, the distance between the points where
successive turns of the spiral meet the same radius
(called: spiral distance) was measured for radii with
four orientations: north (up), south (down), west and
east (sideways). Second, we calculated the eccentricity
of the web, i.e. the ratio between the vertical and
horizontal extent of the outer sections. Third, we
studied the deviation of the hub location in relation
to the vertical geometrical centre of the frame.

Real and simulated webs were analysed by a
one-way ANOVA for the spiral distance and a
two-way ANOVA for the other characteristics after
checking that the underlying assumptions for
normality and equality of variances held.

In the following sections, webs built in square
shaped PVC frames are called ‘‘control’’, those in
narrow shapes ‘‘vertical’’. Real and simulated webs
are distinguished by the extension ‘‘(R)’’ for real and
‘‘(S)’’ for simulated webs. Sample sizes were
ncontrol(R)=10, nvertical(R)=10 and ncontrol(S)=10,
nvertical(S)=10.

F. 3. Fitness evaluation by peppering artificial flies. Example of webs built by 12 spiders of the deme of a start population in the first
generation generated with random genes.

Figure 5.3: Spider webs undergoing functional evaluation using the NetSpinner software.
Illustration taken from [103].

Functional Evaluation of Structures

The desirability of an architecture in this context can be measured either through correspond-

ence with some specific output we expect, or by the expression of structural features which

are functionally successful. Obtaining an objective measure of either is certainly non-trivial.

The work presented here is not concerned with functional properties or structures, al-

though they are certainly important. However, as an illustration of how other simulated

structural products have been evaluated, two such efforts are presented.

Perhaps the most striking example of an evolved structure which was successfully func-

tionally evaluated are the spider webs produced by Krink et al. in [103]. A genetic algorithm

was used to modify the values of several parameters governing the construction of the web.

The resulting web ‘solutions’ are then produced and their functional effectiveness and effi-

ciency evaluated by randomly “peppering the webs with artificial prey” and deriving a final

fitness based on the position and value of prey caught (prey which struck over a line of ‘silk’)

and the amount of material used in the web. This is illustrated in Figure 5.3.

A second prominent example of structural evolution and functional evaluation is given

in the evolution of LegoTMstructures by Funes and Pollack [66, 67]. In this study, real brick

5.2 Coherent Structure: Measuring the Value of Architectures 121

structures were designed using a simulated model of the possible connections between Lego

bricks, which could then be constructed in reality and tested. Various different structures

were evolved, including bridges (which must support weight over some distance), scaffolds

(structures reaching a certain height), crane arms (structures capable of supporting a given

weight with only a single base point) and tables (structures capable of supporting a given

weight over some specified surface area).

Both the Lego constructions and spider webs above are structures with clearly-defined

purposes, and it is this aspect of the formulation of these studies which allows solutions to

be evaluated objectively. In contrast, the nest structures presented in [158, 156, 22, 19, 17]

have only the goal of being ‘interesting’, ‘structured’, ‘coherent’ or ‘biological-like’. Only one

of these criteria – ‘biological-like’ – suggests a function or purpose which might be testable.

For instance, we might consider a generated structure a good nest if a large internal volume

of space is completely enclosed (save for some entrance) by a minimal number of bricks.

Alternatively, we might define the quality of a nest structure based upon the presence of

certain features - planes, columns, corridors and so on.

However, deriving precise definitions of such structural features is certainly non-trivial,

as will be seen in Chapter 9. In reality the functions of structures built by social insects are

multitudinous and complex, including temperature regulation, food production, and assisting

in the production of new generations – all behavioural aspects of social insect life which are

certainly far more complex to model than the intersection of randomly placed prey with a

spider web, or even the well-understood mechanical physics of a Lego construction.

What should be now evident is that the quality of any structure is can only be measured

given the domain within which that structure is to be considered, and a clear definition

of the purpose(s) within that domain which that structure must fulfil. In the case of the

original nest work, while the domain was loosely biological, no requirements are specified

other than it should ‘appear’ biological. This is clearly too vague a criterion from which a

strong measure of structural quality might be derived.

5.2 Coherent Structure: Measuring the Value of Architectures 122

Experimental Bias

The assertions made originally in [158, 156] spring from two key aspects of their investigation:

a random sampling of algorithms did not produce any significant structures, while it was

possible to produce stigmergic algorithms by hand which could produce life-like architectures.

“Although we present almost exclusively structured architectures. . . structureless

architectures are much more likely to be generated if an arbitrary rule table is

used.”[158]

“[The factorial correspondence analyis indicates] the existence of features

common to all coherent architectures at the algorithmic level.”[158]

The existence of common features can only be claimed for the group of hand-composed

algorithms originally considered. Furthermore, since these algorithms were all created by

hand, following the same mental processes and directed specifically towards producing nest-

like structures, it is unsurprising that they occupy a close region of the algorithmic space,

as was later noted:

“The apparent smoothness of the mapping from algorithms to architectures

. . . [may[be an artefact of the proceedure used to design algorithms”[22]

For example, many of the structures depicted in [158, 156, 17, 22, 19] feature planes

extending from around a column structure. The rules required to build a space-filling plane

will be common to each of those algorithms, and those which build columns will again be

similar. This closeness may in fact be an artefact of the limited series of architectures created

by the investigators, and the biological correspondence which the initial explorations into

the capabilities of the Nest-2.11.1 model sought to achieve.

5.2.3 Structural Coherence through Behavioural Consistency

The deterministic quality of coordinated-algorithms would also appear to be more tenuous

than originally declared:

5.2 Coherent Structure: Measuring the Value of Architectures 123

“[A] coordinated rule table always converges toward architectures that pos-

sess similar global features; sometimes, the result is even deterministic. . . On

the contrary, architectures resulting from successive simulations using the same

noncoordinated algorithm are very dissimilar.”[158], 1995

“It is not true, however, that every unstructured architecture is generated

with a nonconvergent algorithm: some of them can be produced consistently

in all simulations. moreover, even in shapes built with coordinated algorithms,

there maybe some degree of variation, which is higher in cases where the number

of different choices within one given building state is large.”[17], 2000

We see that some coordinated algorithms are observed to be deterministic, and others

nondeterministic, with varying degrees of freedom dependent on how tight the ‘interlocks’

between rules are, but also that noncoordinated algorithms can be both deterministic and

nondeterminstic too. Therefore it cannot be possible to establish the coordinated nature of

an algorithm using only the similarity of architectures produced by that algorithm over a

number of simulations.

5.2.4 Structure without Stages

Figures 5.1 and 5.4 serve as examples of very simple stigmergic systems which produce a

clear structure without the definition of any stages whatsoever. The latter in particular

could be considered the antithesis of Bonabeau and Theraulaz’s assertions – the resulting

architectures exhibit interesting properties at a closer level of inspection than the observation

of repeating units within the global structure:

Corridors and Chambers Both structure A and B display the same global features -

corridors of a single brick width, and chambers with a maximum size of 2× 2 bricks.

Bricks vs Space Ratio When simulated within a 12× 12 space, giving 144 cells in which

bricks could be placed, structure A contains 75 bricks, and structure B contains 74.

The ratio of filled-to-empty space is therefore 1.09 and 1.06.

5.2 Coherent Structure: Measuring the Value of Architectures 124

X

X

+ rotations

A B

Figure 5.4: With rotation enabled, seemingly-complex architectures with clearly defined
features (in this case corridors and chambers of definite sizes) can be produced
with extremely simple rule sets. The results of two different simulations are
shown in the right, both using the same two rules on the left, plus all rotations
through the Z-axis (effectively 8 rules if fully specified).

These two features are common to every architecture produced through simulation of

this simple rule set. The production of regular-sized corridors is a result of the fact that in

both rules, a brick is only placed if there are no bricks to either side of that location. This

implicitly guarantees that every single brick will be framed by empty cells to either side, but

since the size of the neighbourhood only stretches a single cell around the build location, it

is possible (and likely in this case) that the location 2 cells from this one will be filled.

The chamber size of at most 2×2 is also a direct result of the empty-cell padding feature

of the rules in combination with the limited neighbourhood size. Since the first rule, if

simulated on its own, would only produce a straight line of bricks, the second rule in the

system is responsible for creating all corners within the architecture. This rule may place

cornering bricks at any point along a line where it is not directly adjacent to any other brick.

Typically we would expect the pattern shown in architecture A in Figure 5.5, but there it

is equally likely that the situation in architecture B will be produced, with a gap of 2 cells

between bricks placed by this ‘cornering’ rule.

However, if a gap of 3 cells is present between two bricks, the neighbourhood centred

around the central empty cell can be matched against the second rule, and thus at some

point during the simulation – if left to run for a sufficient number of cycles – a brick will

be placed there, producing the same local structure as architecture A. In this manner, the

5.2 Coherent Structure: Measuring the Value of Architectures 125

1 2X

1 2 3

1 2 3A

B

C

Figure 5.5: Illustrating the maximum cavity width of 2 bricks. Cells which are greyed out
represent locations where no rule will match at any point. In architecture C,
it is not possible to prevent the ‘cornering’ rule from firing in location X and
thus producing an identical architecture to A.

maximum line length of bricks which is not interrupted by a ‘corner’ brick is 2, and thus the

maximum size of cavity which can be defined by these rules is 2× 2.

This example serves to illustrate that interesting architectures with significant (or poten-

tially useful) properties can be produced from very simple rules, with requiring any notion

of building stages, or the type of strict high-level coordination that they imply. It was sug-

gested in [19] that “no ‘interesting’ pattern can be generated using a single type of brick”;

these examples might therefore through some doubt on the definition of ‘interesting’ used as

a basis for the above assertions.

Finally, given the definition of abstract stigmergic systems in Section 3.1, a rule-set is a

flat sampling of the space of possible simulating configurations with no internal sub-divisions

into ‘stages’. In order to fully appreciate the behaviour of a system of rules, the relationships

between all rules within it must be explored and understood.

5.2.5 The Perception of Structure

The identification of ‘coherent’ structure must be dependent on an observer’s ability to

recognise and characterise features – their ability to recognise patterns[42, 8, 102] (see Sec-

tion2.1.1). In figures 5.2 and 5.4 it was shown that architectures which might be considered

5.3 Beyond Stages: Post-Rules 126

random and unstructured may consistently exhibit significant and interesting properties,

despite the apparently simplicity of the algorithms used in their construction. Recognising

this alternative form of ‘structure’ requires a shift in perception and criteria by those who are

measuring such aspects of the architecture; even as simple a change as considering the nature

of the empty space created within an architecture rather than the specific arrangement of

bricks.

The relative quality of ‘structure’ within any particular architecture therefore depends on

the choice of which specific criteria are selected as important contributors to the measure of

‘structure’. It would seem that in the original work by Bonabeau, Theraulaz et al.[156, 158,

19] such criteria might be the presence of large regular columns, repeating modules whose

size is around that of the neighbourhood an agent can sense, and above all a regularity in

brick placement. Based on the above figures, it has been shown that other, equally valid

criteria might be used to determine the desirability or otherwise of a stigmergically-produced

structure.

The importance of selecting appropriate structural measures exactly mirrors that of se-

lecting specific behavioural aspects of multiagent systems in order to describe emergent

behaviours, as was discussed in Section 2.1.4.

5.3 Beyond Stages: Post-Rules

We have seen that the concept of stages, as outlined above, only provides an a posteriori

indication of the behaviour of one particular set of rules; a recognition of the origins of various

high-level features in the resulting structure, as opposed to an understanding of how those

features are produced, and most importantly how their production influenced the behaviour

of the system. How could such an understanding of the system dynamics be gained?

5.3.1 The Simplest Stigmergic System

Let us consider the simplest possible stigmergic system, shown in Figure 5.6. It consists

of a single rule matching against only one brick and using only a single brick colour in the

5.3 Beyond Stages: Post-Rules 127

X
simulation simulation

Rule r
...

B
1

B
2

B
3

B
4

B
5

B
6

Figure 5.6: The simplest stigmergic system, consisting of a single rule which fires to pro-
duce a straight line of cells. The system will continue building until manually
stopped.

X

simulation

no match

Figure 5.7: The single-rule stigmergic system, this time using a different colour for the
build brick. After matching once, the rule cannot fire again.

whole system. As in the the original Nest-2.11.1 system, the environment initially consists

of a single RED brick – B1 in the figure. The behaviour of this system is fairly self-evident:

if simulated it produces a straight line of bricks, without limit. The process which results

in this straight-line structure is also fairly simple to infer. Rule r matches against any RED

brick which is surrounded on the ‘east’, ‘south-east’, ‘south’, ‘south-west’ and ‘west’ sides

by EMPTY cells. When rule r matches in the cell ‘south’ of this single brick, it places brick

B2 in that cell. This brick, like the initial brick, is surrounded in those same directions by

EMPTY cells. The only place which the system can match a rule in this new environment is

‘south’ of B2, resulting in the placement of B3. This behaviour will continue indefinitely.

As a consequence of rule r firing and placing a brick, a configuration of bricks now exists

against which rule r can match again. It can be said that when rule r fires, it enables rule

r – itself – to fire again. Since this abstract system is entirely deterministic (there are no

other factors which may affect how rules fire), we can suggest that this rule causes itself to

fire again.

In contrast, if we change the colour of the brick built (as in Figure 5.7), then the rule can

5.3 Beyond Stages: Post-Rules 128

X Xsimulation simulation

X
simulation

X
simulation

with rotations

...

...

...
...

......

a)

c)

b)

d)

......
...

...

...

...

...

...

...

...

...

...

...

...

...
...

Figure 5.8: Further examples of single-rule stigmergic systems. In each case, construction
continues until externally halted. All systems except for d) produce a straight-
line structure. The structure produced by d) has structure, but because of the
allowed rotations the line produced is not straight.

only fire a single time; it does not produce any configurations which allow the rule to fire

again. This is a clear demonstration of the use of differing brick colours to control the firing

relationships between other rules (including this rule itself). This is, in fact, the sole purpose

of multiple brick colours within a stigmergic algorithm, and goes some way to explaining the

assertion in [19] that two or more colours are required to produce an ‘interesting’ architecture.

This nature of method of control is explored further in Chapter 7.

Figure 5.8 displays more examples of stigmergic construction with single-rule algorithms.

It is trivial to determine the behaviour of these systems with only a small amount of effort

expended by the observer, and only system d) requires slightly more consideration before

its behaviour can be summarised. Most collections of rules do not, unfortunately, give up

their secrets so readily. While such simple systems might be easily comprehensible by us,

we will require assistance of some form if we are to grasp more complex stigmergic systems.

The purpose of this thesis is to describe some efforts towards developing techniques and

algorithms towards this end.

5.4 A Note Regarding Geometries and Dimensionality 129

5.3.2 The Simplest Rule and The Two-Colour Assertion

It was noted in discussions of Bonabeau and Theraulaz’s original work[19, 29] that the

authors believed no interesting architecture could be generated using an algorithm with only

a single brick colour. We are now in a position to more fully understand the algorithmic

basis behind such an assertion.

Since every architecture begins with a single brick placed in the environment, in order

for an algorithm to produce anything, a rule must exist within that algorithm which matches

against a single brick. The ‘simplest rules’ presented in Figure 5.8 are rules of exactly this

type. If we consider only rules a) and b) in this figure, along with versions rotated 90◦,

180◦ and 270◦ around the z-axis (the line formed by looking ‘down’ at the centre ‘X’ brick

from above), all possible 2D cubic rules which might match against a single brick have been

produced. It is also now easy to note that each one of these rules will produce an environment

in which it can fire again immediately and indefinitely2, creating a single straight or diagonal

line.

Similar rules exist for 2D hexagonal and both 3D systems. The only means available to

prevent this continuous building, if it is undesirable, is by modifying the colour of the brick

to be built, as shown in Figure 5.7. Since all algorithms must include a rule of this general

structure in order to match against the single initial brick, all algorithms must therefore

include at least two brick colours to build architectures in the controlled and predictable

manner Bonabeau & Theraulaz describe as ‘coherent’.

5.4 A Note Regarding Geometries and Dimensionality

It should be noted here that while most of the figures in this section are presented as two-

dimensional cubic systems for consistency, the techniques and algorithms described are not

specific to this cell arrangement, and can be applied to any abstract spatial lattice repres-

entation. The only concepts which we rely upon are the existence of regular arrangements

of linked cells, each of which can maintain some discrete value.

2This type of rule is termed self-activating, and will be discussed directly in Section 5.5.4.

5.4 A Note Regarding Geometries and Dimensionality 130

For the sake of clarity and conciseness, the examples presented within the majority of this

thesis contain only two dimensions. To illustrate the nature of the constraints between rules

and the behaviour of the Nest system in three dimensions would not only require far more

cognitive effort by the reader but also a great deal more space. This is simply as a result

the increase in neighbourhood size within 3D lattices, allowing a greater number of possible

(yet qualitatively equal) rules to be constructed within the chosen spatial abstraction.

Despite this, the underlying methods and conclusions apply equally to 3D structures and

stigmergic algorithms as they do to the 2D examples presented hereafter. At the level of

abstraction which we are considering, the spatial lattice arrangement of neighbouring cells

is only a convenient method of presenting structure, but this arrangement only exists within

the visualisation of the Nest system.

Underlying this representation is an abstract collection of nodes which are connected in

a uniformly regular manner to neighbouring nodes; in other words, a constrained graph with

no spatial context[1]. It is trivially possible (although not useful) to represent a 3D lattice

within two dimensions, simply by rearranging the bricks and cells as they are displayed,

without destroying or creating any new relationships between them.

5.4.1 Post-Rules

When considering those systems above, the sequence of rule firing exhibited during simulation

is clear in our minds: rule r fires, which leads to another rule firing, which then subsequently

leads to yet another rule firing. The chain of events then becomes obvious. It also happens

that in those cases depicted in Figures 5.6 and 5.8, each event within that sequence involves

the same, single rule.

Most interesting systems, however, contain more than one rule, and often many more3.

When presented with a set of rules, the most relevant question to be answered is simply

which rule(s) will fire next? Consequently, we may ask which rule(s) can fire after that?

These questions can be restated more formally:

Without prior examination of the behaviour of the simulation, if Rule X has

3The algorithm presented as an appendix in [156] contains 66 rules, for example.

5.4 A Note Regarding Geometries and Dimensionality 131

fired at time t, what are the post-rules of Rule X, i.e. which rule(s) can fire at

time t + 1?

By carefully considering the mechanisms we have defined for the underlying operation of

our abstract stigmergic systems, we can devise a means of automatically determining those

rules which may be eligible to fire at time t + 1.

Neighbourhoods, Rules and Stimulating Configurations

Before embarking on a detailed discussion of rule matching behaviour in abstract stigmergic

systems, it is worthwhile repeating the clarification of some terms from Section 3.1.1. These

terms will be used frequently in the following chapters:

A Neighbourhood is simply a collection of cells (neighbours) which are spatially adjacent

to one cell in particular (the central cell); each cell has surrounding it a neighbourhood

of cells.

A Rule is an arrangement of cells, identical in size and configuration to a Neighbourhood.

Whereas a neighbourhood is a subset of the cells in situ within the global simulation

space, rules do not exist within the spatial lattice; they are examples of neighbourhoods.

Furthermore, the central cell in a rule defines the modification to the environment if

the rule ‘fires’.

A Stimulating Configuration is simply a Neighbourhood which is matches in a cell-

to-cell comparison with a Rule in this stigmergic system. The comparison generally

ignores the contents of the central cell, since it will normally be EMPTY in the neigh-

bourhood, and filled with a brick in the rule4.

Unless stated otherwise, the dimensions of neighbourhoods, rules and stimulating config-

urations are identical within the context of any particular stigmergic system.

4When considering excavation (see Section 4.2.5) this situation might be reversed. Here we consider only
the permanent placement of bricks, as in the original simulations outlined in Section 3.1. Excavation and
post-rules will be discussed in Section 5.4.4

5.4 A Note Regarding Geometries and Dimensionality 132

Post-Rule Generation

Consider the single rule r which comprises the simple stigmergic system in Figure 5.6. At

time t, the set of stimulating configurations within the environment is C, where r ∈ C. At

some point in time during a simulation’s run, there will come a point at which r is able to

fire5. If r fires at time t, then at (t+1) the set of stimulating configurations in the environment

is now C ∪Cr, where Cr is the set of stimulating configurations created as a direct result of

the brick being placed by r. Since no other rules have fired between t and (t + 1), the only

neighbourhoods which have been modified are those which include the location in which r

built – the neighbourhoods centred around each empty cell surrounding the location in which

r placed a brick. These neighbourhoods are the new stimulation configurations, Cr.

Consider the simple rule labelled Rule r in Figure 5.9. If the central brick (marked ‘X’)

is placed, the neighbourhood of each of the surrounding cells (labelled 1 to 7) is modified.

By firing, rule r has given rise to these new stimulating configurations, shown around the

central rule in Figure 5.9. Rules which match these stimulating configurations are those

which can fire as a direct result of r firing – we call these rules the post-rules of rule r. For

example, given the new neighbourhood around cell 4, we now know that a rule which builds

at time t + 1 in cell 4 must match against the EMPTY cells 2, 3, 5 and 6.

However, because some of the cells in each of these new neighbourhoods lie outside the

scope of the neighbourhood of r, we cannot immediately tell what cell values each post-rule

might have. For this reason, each cell lying outside the scope of the original neighbourhood

of r is given the value UNDEFINED.

We have already seen that neighbourhoods and rules are effectively different interpret-

ations of the same set of cells. Only two steps are required to transform a copy of the

neighbourhood around cell 4 in Figure 5.9 into a rule:

1. Replacing UNDEFINED Cells – Each of these UNDEFINED cells can hold any value valid

within the constraints of this particular stigmergic system.

2. Setting the Build Cell – the build cell should hold a brick, or in other words the

5It is quite possible, and in fact very common if the stigmergic algorithm is generated randomly, that
such a situation where r could fire will never arise. However, for the purposes of this argument, we assume
that we have selected r to be a rule which does fire at some point during the simulation.

5.4 A Note Regarding Geometries and Dimensionality 133

1 7

2 X 6

3 4 5

2 X 6

3 4 5

1
2 X

1
2 X
3 4

2 X
3 4

X 6
4 5

7
X 6
4 5

7
X 6

2 X 6

3 X 5

2 X 6

3 X 5

2 X 6

3 X 5

2 X 6

3 X 5

2 X 6

3 X 5

2 X 6

3 X 5

2 X 6

3 X 5

2 X 6

3 X 5

*

Rule r

Figure 5.9: Determining the post-rules of the single rule from the simplest stigmergic sys-
tem. Meta-rules for each of the 7 empty cells are generated. Dotted cells in
meta-rules may be either filled or empty. The expansion shown contains the
original rule itself, showing that it will cause itself to fire repeatedly. UNDEFINED
cells are shown with a dotted fill .

5.4 A Note Regarding Geometries and Dimensionality 134

Given a stigmergic system with possible cell values S, and a rule within
that system r:

1. The set of post-rules for r, Pr = ∅.

2. For each EMPTY cell e in r:

(a) Create a meta-rule m by extracting the local neighbour-
hood around e. Cells which are not present in r are set to
UNDEFINED.

(b) For each value u ∈ (S − {EMPTY}):
i. Set the value of the build-cell (the central cell) of m to be

u.

ii. Let Ur be the set of all UNDEFINED cells in r, and A the
set of all permutations of |Ur| cell values from S.

iii. For each combination of values a ∈ A, assign a to Ur and
add this rule to Pr.

Figure 5.10: The post-rule generation algorithm.

cell should have any value, except EMPTY.

For instance, if we have imposed the constraint that only a single colour of brick may be

used, each of the UNDEFINED cells can be either EMPTY or RED. The build cell cannot be empty,

so it must be set to RED.

Rules which contain any UNDEFINED cells are called meta-rules. A meta-rule can be

‘expanded’ into a set of normal fully-defined rules (rules which contain no UNDEFINED cells).

This is achieved by generating all possible permutations of valid cell values over the subset

of cells within the rule which are UNDEFINED. In other words, we have u UNDEFINED bricks,

and |S| valid cell values, and we must generate every unique way that these bricks can be

assigned these values; the number of unique assignments is given by |S|u.

The expansion of a single meta-rule taken from rule r is shown in the lower portion of

Figure 5.9. Here we can see that the row of three UNDEFINED cells is assigned every possible

combination of EMPTY and RED values to produce 23 = 8 unique rules. Since there are only

two values in this particular system, the sequence of ‘filled’ and ‘empty’ cells in this example

mirrors a binary counter progressing from decimal 0 (binary 000) to decimal 7 (binary 111).

The algorithm for generating all post-rules from a given rule r is shown in Figure 5.10.

5.4 A Note Regarding Geometries and Dimensionality 135

Stage A Stage B1

Stage B2

has postrulex y

Figure 5.11: Building stages shown as relationships between rules using post-rules. Each
stage consists of sequences or loops of post-rules. New stages are entered by
following post-rule links outside the current loop.

Post-Rules and Building Stages

With the ability to generate post-rules, we can now begin to examine the behaviour of a

rule set without having to use those rules in simulation and then attempting to interpret

the construction behaviour a posteriori. We can also frame the original assertion based on

‘building stages’ within the more concrete framework of post-rule links.

If we are given a set of rules R, we can select any rule r ∈ R and generate all of r’s post-

rules Pr. The set intersection R ∩ Pr gives us those rules in R that may fire directly after r

during simulation. We can therefore establish post-rule links between r and the members of

R ∩ Pr.

This is illustrated in Figure 5.11. The overall structure is produced by 5 rules, which

can be separated into three ‘stages’. The first stage A constructs the central column of

the structure, and will produce the line of bricks continually, independent of any other

construction behaviour – this is implicitly indicated by the presence of the loop in this

stage. Meanwhile, stages B1 and B2 are independently triggered at certain points during the

construction of this column (by stage A), resulting in the spurs at either side. The rules in

stages B1 and B2 are post-rules resulting from the expansion of meta-rules centred around

cells 1 and 7 respectively in Figure 5.9.

5.4 A Note Regarding Geometries and Dimensionality 136

Given a stigmergic system with possible values S, and a rule within that
system r:

1. The set of pre-rules for r, Qr = ∅.

2. For each non-EMPTY cell b in r:

(a) Create a meta-rule m by extracting the local neighbour-
hood around b. Cells which are not present in r are set to
UNDEFINED.

(b) Let Ur be the set of all UNDEFINED cells in r, and A the set of
all permutations of |Ur| cell values from S.

(c) For each combination of values a ∈ A, assign a to Ur and add
this rule to Qr.

Figure 5.12: The pre-rule generation algorithm, for generating those rules which if fired
may create the environmental configuration the given rule matches.

5.4.2 Pre-Rules

In addition to producing the set of rules which could fire after any given rule within a stig-

mergic system of this type, we can also generate those rules which may have fired immediately

previous to the rule under consideration, or more accurately, those rules which might have

created the simulating configuration which matched against this rule. These pre-rules are

simply the reverse of post-rules, working backwards in the series of building events rather

than forwards. The algorithm for producing pre-rules is slightly simpler but almost identical

to the algorithm for post-rules, and is shown in Figure 5.12.

Those rules which contributed to the local environment matching the current rule r must

have placed a brick in this environment. Furthermore, the brick which this rule places does

not exist at time (t − 1). Therefore, if we remove the central brick from r, each pre-rule

must have placed a brick in one of the non-EMPTY cells within r.

5.4.3 Meta-Rules

When determining post-rule links within an algorithm, it is not necessary to fully expand the

meta-rules. Instead, the same rule matching mechanisms developed for the Nest-3.0 system

(specifically, cell matching from a set of values as described in Section 4.2.6) can be used

5.4 A Note Regarding Geometries and Dimensionality 137

to match UNDEFINED cells in meta-rules against fully defined rules from the algorithm. This

can represent a significant computational saving.

Meta-Pre-Rules – The number of meta-rules created is equal to the number of filled cells

in the original rule, excluding the central cell, which represents the brick that will

be built should this rule fire. The number of fully defined pre-rules represented by a

meta-rule with c UNDEFINED cells is given by sc, where s is the number of valid cell

states (including EMPTY).

Meta-Post-Rules – The number of meta-rules created is equal to the number of empty

cells remaining in the original rule during post-rule generation, The number of fully

defined post-rules is given by (s − 1) × sc, since we must also assign the state of the

brick which is built by the rule, and this must be non-EMPTY.

For instance, if rule r in Figure 5.9 exists in a stigmergic algorithm where only a single

brick type is allowed (or in other words, cells can have only two distinct values, RED and

EMPTY, so s = 2), then the total number of post-rules of rule r, expanded from the 7 meta-

rules (for each of the 7 empty cells), is given by:

4× ((2− 1)× 25) + 3× ((2− 1)× 23) = 152

Clearly, if the number of possible brick types is increased, the number of post-rules

increases exponentially.

Depending on the nature of the geometry under consideration, and the position of the

meta-rule in relation to the original rule, the number of UNDEFINED cells and as a consequence

the number of fully defined pre- or post-rules differs significantly. This is illustrated in Figure

5.13 and Table 5.1.

5.4.4 Post-rules, Pre-rules and Excavation

While the Nest-3.0 system described in Chapter 4 features excavation behaviour in addition

to building in the original stigmergic model, until now we have based our algorithms on the

5.4 A Note Regarding Geometries and Dimensionality 138

1

2

1

2

1 2

1 2

Edge - 3

1 1

Corner - 5

Any Position - 3

2D Cubic

2D Hexagonal

3D Hexagonal

2

Top/Bottom - 13 Middle - 9

2

Figure 5.13: The number of UNDEFINED cells depends on the geometry of the rules, and
the position of the meta-rule’s central cell in the original rule.

Geometry Position Values Post-Rules
2D Cubic Edge 2 8

4 192
8 3584

Corner 2 32
4 3072
8 229376

2D Hexagonal Any 2 8
4 192
8 3584

3D Hexagonal Middle 2 512
4 786432
8 939524096

Top, Bottom 2 8192
4 20136592
8 3848290697216

Table 5.1: The number of post-rules generated from meta-rules in different locations with
various geometries.

5.4 A Note Regarding Geometries and Dimensionality 139

XX

X

X

X X

E

E

E

E

Building
Post-Rules

Excavation
Post-Rules

Figure 5.14: Meta-rules generated when excavation is enabled.

original system described in Section 3.1. At this point we will now consider how excavation

might affect the process of post-rule generation.

Consider the rule and meta-rules illustrated in Figure 5.14. To the left we have the

‘normal’ post-rule meta-rules, i.e. the meta-rules representing those rules which might place

a brick as a direct result of the environmental modification producing when this rule fires.

If bricks can be removed during simulation, we must also consider that by placing a brick,

we may have created a simulating configuration for a rule which removes a brick. Since the

scope of our environmental modification is limited to the local neighbourhood, the candidate

bricks for removal are only those bricks in our local neighbourhood.

Therefore in Figure 5.14 we can see that after the rule fires, there are 4 bricks present

in the local environment. To generate the excavation meta-rules we select a brick in the

neighbourhood as the centre cell, where instead we would select an empty cell during the

regular procedure. That brick will be removed (indicated by the E in the build cell of the

meta-rule) in the excavation rule.

When excavation is allowed, the number of meta-rules for a given rule r is equal to the

number of empty cells, plus the number of filled cells within the rule – in other words, the

total number of cells within the rule. The number of excavating post-rules from an excavating

meta-rule with c undefined cells is given simply by sc, where s is the number of valid states

in the stigmergic system.

5.4 A Note Regarding Geometries and Dimensionality 140

It should be clear now that the process and result of generating excavating post-rules is

identical to that required to generate pre-rules. When including both building and excavating

behaviours, the number of post-rules is given by:

((s− 1)× (sc)) + sn−c

where s is the number of valid cell values, c is the number of EMPTY cells in the rule, and n

is the size of the neighbourhood (including the centre cell).

It is important to note that by including excavation, the space of possible stigmergic

algorithms is greatly increased; the number of possible rules increases from (s − 1) × sc−1

to sc. This would clearly have a significant effect on the systematic exploration of possible

stigmergic algorithms.

Building and Excavation – The General Case

From an abstract perspective, the obvious general case is to consider rules as defining arbit-

rary cell value modifications, rather than only:

• modifying a cell from empty to any other cell value (filled)

• modifying a cell from filled to empty

In a generalised environmental modification system, when a rule is matched the value

defined in the centre cell is directly applied to the current location, regardless of the current

state of that cell in the spatial lattice. For example, we are now free to change a cell from RED

to BLUE, without having to remove a ‘brick’ as an interim step. This behaviour encapsulates

both building and excavation in a single model.

5.4.5 Pre- and Post-rules – Summary

We now have an algorithmic means to explore the behaviour of stigmergic systems – by

considering the post-rule links implicit within the rule set, we can determine likely sequences

of rule-firing without being forced to simulate the system and analyse its behaviour from

above.

5.5 Automatic Generation of Stigmergic Algorithms using Post-Rules 141

From this new perspective we see again that ‘building stages’ are simply an approximate

labelling of a system provided by the observer. Furthermore, the separation of rules into

stages has no bearing on the behaviour of the system – it is only useful to the observer.

Meanwhile, the dependencies highlighted by post-rule links define exactly how the system

can behave.

5.5 Automatic Generation of Stigmergic Algorithms

using Post-Rules

In this section we will now reconsider the original exploration of the space of stigmergic

algorithms undertaken in [156]. We will then attempt to apply some of the practical under-

standing we have gained of the nature and behaviour of these abstract stigmergic rule sets,

in the form of post-rules.

5.5.1 An Intractable Problem Space

As Bonabeau et al.[158] attempted to understand these stigmergic systems by generating

a set of rules and examining the architecture they produce, they were forced to confront a

space of possible stigmergic algorithms which is intimidatingly large. For a three-dimensional

hexagonal simulation and 2 allowable brick colours, the number of different rules becomes

2× 320 = 6, 973, 568, 802, or almost 7 billion rules. In general, the number of possible rules

within a given system can be found as follows:

number of rules = (s− 1)× sc−1 (5.1)

where s is the number of valid brick states, and c is the number of cells in a local neigh-

bourhood: the neighbourhood consists of c cells, but one of these is the central cell, which

indicates the colour of brick to build. This cell, therefore, cannot be empty, and so accounts

for the (s− 1) term above. The remaining (c− 1) cells may hold any value.

Furthermore, if they limited their search to algorithms of up to 10 rules, the total number

5.5 Automatic Generation of Stigmergic Algorithms using Post-Rules 142

of algorithms they are faced with is given by summing over the binomial coefficient:

number of algorithms =
m∑

i=1

(
n

i

)
≡

m∑
i=1

n!

i!(n− i)!
(5.2)

where we wish to choose m elements from a set of n. In this case, n is the total number of

rules, as defined above, and m is the limit of our algorithm size. As an illustration of the scale

of this problem space, the number of three-dimensional hexagonal algorithms with between

1 and 10 rules is approximately 4.426× 1096. At a rate of one million algorithms considered

per second, it would still take 1.4 × 1083 years to consider every algorithm. Furthermore,

the number of algorithms vastly exceeds the number of atoms in the universe, estimated6

between 1× 1066 and 1× 1079 atoms. Even maintaining a record of which algorithms have

been considered poses a significant problem in the face of the memory constraints of even

the largest computing resources currently available.

Clearly the space and time constraints prohibit a direct consideration of this problem;

the possible number of algorithms not only grows combinatorially as the number of rules

allowed in an algorithm increases, but even the exhaustive consideration of the subset of

relatively small algorithms (containing only a handful of rules) is, at least for the moment, a

computationally intractable task. If we wish to explore the space of stigmergic algorithms in

any systematic manner, this overwhelmingly large pool of potential rules must be constrained

in some manner.

5.5.2 Rule Selection in Algorithm Generation

In [156], it is noted that the vast majority of stigmergic algorithms randomly sampled did not

produce interesting results. While some of these ‘uninteresting’ results may be architectures

which did not pass the ‘coherency’ criteria laid down by Bonabeau and Theraulaz, the vast

majority of these algorithms will have produced absolutely nothing during simulation.

Consider the two ‘random’ rule sets in Figure 5.15. Algorithm a will produce no building

behaviour, while Algorithm b will produce a randomly-staggered line structure. In a ran-

dom sampling, these two algorithms are equally likely to be selected for simulation. If we

6http://www.sunspot.noao.edu/sunspot/pr/answerbook/universe.html

5.5 Automatic Generation of Stigmergic Algorithms using Post-Rules 143

X

X

X

X

X

X

X

X

a) b)

Figure 5.15: Two ‘random’ algorithms. Algorithm a produces no structure, placing no
bricks. Algorithm b places bricks indefinitely.

constructed these algorithms by selecting m rules in sequence, each choice is made from the

set of all rules (Equation 5.1), minus those rules already selected for the algorithm.

Figure 5.15 highlights the fact that selecting rules in this random manner is a very poor

method for generating an algorithm. Some means of guiding the algorithm selection towards

those rule sets which contain sequences of rules that will actually fire will clearly increase

the value of our simulation time dramatically.

The First Rule

At the beginning of a simulation, the environment contains a single brick. Therefore, for any

construction to proceed, there must be some rule in the algorithm which matches against

this single brick. In more general terms, construction in every algorithm must begin with a

rule that contains exactly two bricks – the central cell, which indicates the brick to be built,

and the brick which matches that single brick in the initial environment.

The number of rules with b bricks in a system of s states and neighbourhood size in cells

c is given by:

Num. Rules with b Bricks = s!

(
c

b

)
≡ s!c!

b!(c− b)!
(5.3)

Using this, we can see that the initial rule choice in a three-dimensional cubic system has

been reduced from 47,525,504 to only 7,800 – a dramatic reduction.

It would seem intuitive that the next rule must match against two bricks, and therefore

contain three bricks (and a corresponding reduction in choice from 47,525,503 to 62400).

Unfortunately this is not the case – referring back to the single-rule systems in Figures 5.6

5.5 Automatic Generation of Stigmergic Algorithms using Post-Rules 144

To create an algorithm with n rules:

1. Create the rule set for the algorithm, R = ∅

2. Insert the initial rule ri into R.

3. Until |R| = n

(a) Select a rule r ∈ R

(b) Generate the post-rules of r, Pr (see Figure 5.10)

(c) Select a post-rule p ∈ (Pr −R), and add p to R

Figure 5.16: Generating stigmergic algorithms using post-rules.

and 5.8 we can see that at any point in the course of these simulations, three, four or more

bricks may exist in the environment. In these situations it is clear that a rule which contains

any number of bricks could potentially match in these simulations. Instead, we need some

other mechanism of systematically determining which rule could fire next during simulation.

5.5.3 Post-Rules and Algorithm Generation

We have seen earlier in this chapter how the identification of post-rules allows the observer to

determine, without simulation, which rules from an existing algorithm can fire in sequence

during a simulation – the post-rule links between existing rules. However, we can also

attempt to apply this implicit constraint information to the generation of random algorithms,

resulting in simulations which are far more likely to produce something rather than nothing.

The algorithm presented in Figure 5.16 demonstrates a simple method to generate a

stigmergic algorithm of any given size.

At each point during rule selection, we consider which rules could fire next during simu-

lation by generation a set of post-rules and adding the next rule from within that set.

Should we wish to, we can define ‘building stages’ within this process, by selecting the

next post-rule p in the algorithm above such that it is only the post-rule of a single-rule

already within the algorithm. The slight modification to the algorithm in Figure 5.17 shows

how to create a new building stage using post-rule information.

An example of an algorithm derived in this manner is presented in Figure 5.18. From

5.5 Automatic Generation of Stigmergic Algorithms using Post-Rules 145

3. Until |R| = n

(a) Select a rule r ∈ R to trigger the next stage

(b) Set the set of all post-rules PR = ∪q∈RPq where q 6= r

(c) select the next rule p ∈ Pr − PR and add p to R

Figure 5.17: Adding a new stage using post-rules.

X

X

X

X X

X

initial cell

r1

r2 r3

r4

r5

r1

r4

r5

r1

r1r3 r1

r2

i
4 1 2
5
4
5

1 2
1

4
5

1
2
3
4 1 2

4 1 2 5 1
5 3 4 1

5
4 1 2
5
4 1 2
5 1

2
3
4
5
4

2
3

1

1

2

2
1 2

3
4 1 2

4 1 2 5 3
5

Figure 5.18: A stigmergic algorithm generated using post-rule information. In the con-
structed architecture, bricks are labelled with the rule id which placed the
brick.

5.5 Automatic Generation of Stigmergic Algorithms using Post-Rules 146

X X

X

X

initial cell r1

r1 meta2

r2

r2

r1

i
1
1
1
1
1
1
1

simulation

Figure 5.19: A second stigmergic algorithm generated using post-rules. During simulation,
one of the post-rules never fires.

the initial cell, a single post-rule r1 is selected and added to the algorithm. From there, a

post-rule of r1 is generated – r2 – and then subsequently r3 is added. These three rules could

be considered a ‘building stage’. To start a new stage, rule r4 is added as the post-rule to

only r1 and no other rules in the algorithm thus far. Finally, rule r5 is added to this second

‘stage’.

The results of a simulation using this algorithm are also shown in Figure 5.18. The

construction is quite erratic; to the observer it is obvious that there may be elements of

structure within the resulting architecture, but the architecture is not completely regular.

Repeated simulations produce similar, ‘incoherent’ results.

We have generated an algorithm which satisfies all the criteria presented in [158, 156, 19]

describing a ‘coordinated algorithm’, being:

“a finite number of building steps, with the necessary condition that the local

configurations that are created by a given stage and trigger building actions differ

from those created by a previous or a forthcoming building stage so as to avoid

the deorganization of the building activity.”[158]

but which does not appear to produce a ‘coherent’ structure, at least according to the

definitions based on intuition provided by Bonabeau et al.

Another simple post-rule generated algorithm is shown in Figure 5.19. The derivation

of each of the rules is outlined within the diagram in place with the final algorithm itself.

5.5 Automatic Generation of Stigmergic Algorithms using Post-Rules 147

X

+ rotations

or

Figure 5.20: A single-rule stigmergic system that does not built continually, but instead
produces one of two possible 3-brick architectures.

The results of simulation of this algorithm are also shown. We can see that while rule r1

fires repeatedly, rule r2 does not fire once during the entire simulation. This simple system

brings to our attention a more important aspect of the application of post-rule techniques

to algorithm generation, as will be discussed in the following section.

5.5.4 Single-Rule Systems and Post-Rule Uncertainty

The simple single-rule stigmergic algorithms shown in Figure 5.8 are all examples of self-

activating rules – rules whose post-rule set includes themselves, or more formally those

rules r where r ∈ Pr. This is clearly exhibited in the simulated behaviour of the systems,

which all build structures without limit, despite their apparently simplicity.

In fact, only single-rule stigmergic systems where the rule contains only a single brick will

produce any structure given the initial environment specified in Section 3.1. If the initial

environment contains only a single brick, then the rule which matches this must match

against one and only one brick. Only single-rule systems in which the brick built is the same

colour as the brick matched build continually: as shown in Figure 5.20, with a rule which

builds an alternate brick type, and with rotation enabled, two limited structures are possible.

The rule in this figure is only self-activating when rotated rules are allowed to match. If no

rotations were valid in this system, the rule would only match once, as in Figure 5.7. By

allowing rotations, this rule can match itself when rotated 180 ◦ around the centre cell, and

thus fire a second time.

5.5 Automatic Generation of Stigmergic Algorithms using Post-Rules 148

2

1

X'
X

Rule a...

X'

X'X'

extract
meta-rule

generate
post-rules

rotate

...matches a

X

1
2

3
4

...

a) b)

Figure 5.21: Two examples of rules which are post-rules of themselves, but require specific
environmental configurations to trigger.

Post-Rule Uncertainty

Identifying a rule as being self-activating does not guarantee that it will be able to fire at

time t + 1 if it also fired at time t. When considering the rules presented in Figure 5.21, it

becomes clear that post-rules are only an indication of which rules could fire in the next

simulation cycle. Rule a in Figure 5.21 is clearly self-activating; by extracting a meta-rule

and subsequently producing one possible rotated post-rule, it is clearly the case that a ∈ Pa.

However, if a stigmergic algorithm consisting of only rule a is simulated, no building activity

will occur. Instead, a specific environment is required (as shown in the figure) before rule a

can enable itself to fire again at time t + 1. Only when the rule matches in location 1 will a

stimulating configuration be produced around cell 2 that also matches a rotation of rule a.

An even simpler example is presented as system b) in Figure 5.21, in which no rotation

is required. Only in the presence of an existing diagonal line of bricks, will the rule in this

system cause itself to fire repeatedly, at least until the end of the diagonal line of bricks is

reached.

From this, in conjunction with the simple automatically generated system shown in Figure

5.19, we can now see clearly that the post-rules of any rule are those rules which could fire

directly after this rule, given the correct external circumstances. They do not indicate which

rules will certainly fire. Therefore using post-rules can only be used as a rough guide for the

5.5 Automatic Generation of Stigmergic Algorithms using Post-Rules 149

selection of rules to be added to a stigmergic algorithm, and an algorithm generated in this

manner cannot be guaranteed to produce any structure at all.

5.5.5 The Real Benefit of Post-Rule Selection

Since selection based on the post-rules of existing rules within the algorithm cannot guarantee

that each rule added will be active (and therefore worthwhile) during simulation, what can

be said about the benefits of post-rule based selection over the simpler, random choice?

It should be clear that the probability that a post-rule pr will fire after rule r is always

equal or greater than the probability of a randomly selected rule firing. Let R be the set of all

rules within a system. If rule r fires at time t, let the set of all rules which actually can fire at

time t+1 be N , and Pr is the set of all post-rules of r, such that N ⊂ Pr ⊂ R, and therefore

|N | < |Pr| < |R|. It is then clear that if we select the next rule n, P (n from Pr) = |N |/|Pr|

and P (n from R) = |N |/|R|. Since Pr ⊂ R, we know that |Pr| ≤ |R|, so |N |/|Pr| ≥ |N |/|R|.

However, what is not clear is just how much of a reduction in choice post-rule based

selection affords. Since each rule is unique, and the number of post-rules depends to a large

extent on the layout of bricks and empty cells within that rule, it is not feasible to make

a precise determination of the exact size of Pr for any rule. An approximation may be

determined as follows.

Given a two-dimensional, cubic system, with two possible brick colours (and therefore

three possible cell values), the total number of rules in the system, |R|, is given by Equation

5.1 as follows:

(s− 1)× sc−1 = (3− 1)× 39−1 = 13122

If we imagine an ‘average’ two-dimensional cubic rule, of the eight cells in the neighbourhood

which aren’t the build cell half (four) may be filled, and the remaining four be empty. Of

those four cells, two might be placed on the edge of the rule, and the remaining two on

corners (see Figure 5.13). We can therefor estimate that the total number of postrules for

our ‘average’ rule, |Pr| is given by:

2× (s− 1)× 5s + 2× (s− 1)× 3s = 4× 53 + 4× 33 = 608

5.6 Automatic Algorithm Generation – Summary 150

There is clearly a significant reduction, especially when it must be noted that the total of

608 certainly contains duplicated rules as a result of the ‘expansion’ of the meta-rules during

post-rule production.

However, this method of estimation becomes less reliable as the number of states available

in a system increases. We have also idealised the characteristics of the ‘average’ rule within a

system: initially the number of post-rules will be significantly higher, since a larger number of

empty cells will be present within the rule. As the rules present in the algorithm contain more

bricks, the number of possible post-rules decreases according to the number and location of

empty cells. Even if we assume that this estimate of post-rule numbers is accurate, the total

number of algorithms of between 1 and 10 rules is:

m∑
i=1

(
608

i

)
= 1.796× 1021

This naive estimate indicates that even using post-rules, the number of possible al-

gorithms is still too large for us to exhaustively consider using the computational tools

currently available.

5.6 Automatic Algorithm Generation – Summary

In this section the original approaches adopted by Bonabeau et al.[158, 156, 22, 19] to search

for ‘interesting’ structures were considered, along with the assertions they made regarding

what characteristics a stigmergic algorithm must have to produce such structures. The

notions of ‘coordinated algorithm’, ‘building stages’ and ‘coherent structures’ have been

examined and their various weaknesses exposed.

The concept of post-rules (along with pre-rules and meta-rules) was introduced as a

means to avoid some of the ambiguity present in those concepts, and as a better means for

automatically generated stigmergic algorithms for the systematic exploration of the space

of possible rule sets. However, despite the promise post-rules would appear to hold for

predicting algorithm behaviour, they can only indicate which rules could fire next, instead

of which rules will fire next during simulation. Some rough numerical calculations indicate

5.6 Automatic Algorithm Generation – Summary 151

that while the size of of the problem space has been hugely reduced, it is still computationally

infeasible to systematically explore the entire space even for simple systems, as a means for

examining the potential behaviour of stigmergic systems.

In the remainder of this thesis an alternative, more practical and potentially much more

rewarding approach to the automatic generation of stigmergic systems will be explored.

Chapter 6

Automatic Algorithm Extraction

Overview

As has been suggested by the original Nest-2.11.1 work and explicitly shown in previ-

ous chapters, systematic consideration and generation of coordinated stigmergic algorithms

presents significant problems in terms of computational tractability. Such an investigation is

directed at addressing the question: what is the range of structural features that can be gen-

erated using stigmergic algorithms? Like many such fundamental questions, despite a clearer

understanding of the nature of the problem, in this case provided by examining the potential

causal relationships between rules via post-rules, such a comprehensive understanding of the

system as a whole remains beyond our grasp.

However, the lessons learned from the consideration of this question have applications

beyond the problem they were designed to address. A ”bottom-up” comprehensive under-

standing is most useful when it can be used to answer specific questions about individual

situations. Thus, perhaps a more important question to address is given a specific problem,

how can the principles of stigmergic construction be applied to solve it? The problem in this

case is the construction of arbitrary structures by simple agents sharing a single, stigmergic

rule-set. As noted in [156]:

“The space of local configurations that is likely to be encountered by a given

agent is rather huge. . . and the space of local rules cannot be explored system-

6.1 The ‘Holy Grail’ 153

atically. . . One has to discover the minimum set of rules necessary to produce a

given architecture in a more clever way.”

Is it possible to automatically extract a stigmergic algorithm from an existing structure?

In following chapters, the feasibility of such a process will be examined, and one solution to

this problem presented.

6.1 The ‘Holy Grail’

Research using stigmergic and swarm techniques is primarily concerned with applying be-

haviours seen in nature to artificial problems. What is crucially important in this process

is finding suitable problems for the biologically-inspired approach. For instance, one of the

most successful examples of biologically-inspired problem solving is the application of ant

foraging and path-finding techniques to routing problems in the internet and telecommunic-

ations domains[51, 69, 17, 20]. The parallels between each of these domains are quite clear,

each requiring the production of shortest-paths with a large degree of robustness.

However, the application of other biologically-inspired models is not so clear. Certainly

the true range of real-world applications of these solutions is far less obvious. Here we are re-

ferring to swarm behaviours such as sorting[46, 12], collecting[149, 34, 54], task allocation[21]

and construction[158, 156, 17, 29, 95, 94, 115].

6.1.1 From Modelling to Manufacturing: Applied Stigmergy

The experiments discussed previously [156, 19] clearly show that the model of stigmergic

construction used here is capable of producing interesting structures, some of which do

appear very similar to those found in nature. While this is a result in itself, it is still of little

more than curiosity value. For this model to become useful in itself, we must determine

if we can apply these stigmergic construction techniques to real-world problems: while we

rarely have need to build structures which resemble the nests of social insects, we do have

significant construction needs, and the possibility of using stigmergic systems to fulfil these

6.2 Simple Stigmergic Algorithm Extraction 154

needs is of course, very attractive1.

Thus far we have considered the following questions:

Is the model capable of producing structures? Clearly the answer is yes, based on the

architectures presented in previous work, along with our own experimentation.

Is the model capable of producing interesting structures? Despite the subjectivity

of this question, it would be difficult to dispute the merits of those structures which

do indeed appear to mirror forms commonly seen in nature. Clearly not only does the

model produce something, it can, under the right circumstances, produce something

potentially desirable.

What structures can or cannot be produced using this model? Can we produce ar-

bitrary architectures using stigmergic techniques? A systematic exploration of this

model is, of course, impossible, but we have begun to understand how the system will

behave in the presence of certain types of rule.

Unfortunately, beyond a limited subset of simple algorithms, the tools we have de-

veloped so far to explain and understand this model are not powerful enough to predict

the behaviour of all the stigmergic algorithms we might wish to consider.

Finally, we must consider what might be regarded as the ‘Holy Grail’ at the end this line

of research – how can we discover stigmergic algorithms which produce specific,

arbitrary structures? In answering this question we will have taken the most significant

step towards practical application of stigmergic construction as a means of manufacturing

structures which are specified by our needs as designers, engineers and ultimately the users

of the products created.

6.2 Simple Stigmergic Algorithm Extraction

In order to begin investigating the possibility of an algorithm extraction process, we first

consider a completed architecture, shown in Figure 6.1. This structure has been produced

1See 1.2.2 for the motivations behind using emergent systems

6.2 Simple Stigmergic Algorithm Extraction 155

Figure 6.1: A simple architecture, as produced by the Nest-3.0 system.

previously by the a Nest system, and we are required to derive the rules used during its

creation.

6.2.1 Ordering and Rule Extraction

By considering the order in which bricks were placed, we can derive the exact structure of

the rules which placed those bricks2. During each simulation cycle, an agent considers the

arrangement of bricks surrounding its current position, and if a match is found within the

set of rules, a brick is placed. This process is described fully in Section 4.7.

At each simulation cycle, we know the current simulation ‘time’, t. If when the bricks

are placed each brick is tagged the current value of t, when the structure is completed each

brick will be labelled with its order, n, within the overall construction process. This can be

seen in Figure 6.2.

Since we now know the order in which the bricks were placed, we can ‘rewind’ and ‘replay’

the construction at will, simply by removing and adding bricks from the architecture in the

order specified by the brick tags. To see the the state of construction at time t, we can

simply remove all the bricks whose order tag n ≤ t.

If we select a single brick b with order nb within the structure, and create a copy of its

local neighbourhood including only those bricks where n < nb, this resulting neighbourhood

must match exactly the rule Rb which placed b during the simulation.

This point is worth making very clear: all of the cells (both filled and empty) surrounding

the location where brick b was placed must have matched exactly for the rule Rb which placed

b to have fired. Because we know that Rb did indeed fire, we can extract the exact structure

2It should be noted that in this abstract system, bricks can never be placed truly simultaneously, since
each agent is given the opportunity to examine its surroundings and build a brick before any other agent
may act. Truly simultaneous action is beyond the scope of this simple abstract system.

6.2 Simple Stigmergic Algorithm Extraction 156

1

3
4

5

2
2

3

1
1

2
3

1

3
4

2

4
5

3
3

4
5

Figure 6.2: Using brick ordering to extract rule structure from a pre-generated architecture.

rules = [] # a new empty array
architecture.eachBrick { |brick|

create a new rule centred on this brick and including
its entire neighbourhood
r = Rule.new(brick)

r.eachBrick { |ruleBrick|
if any brick within this rule is ordered after the central ’build’
brick, remove it from the rule
if (ruleBrick.order > r.buildBrick.order)
r.deleteBrick(ruleBrick)
end

}

add the new rule to the set of all rules
rules << r

}

Figure 6.3: Ruby code for creating a set of rules from an architecture in which each brick
has been assigned an order.

of Rb by considering the state of the architecture at that location immediately before b was

placed. Thus all bricks with an order n < nb, and no others, must be present in Rb. Within

the Nest-3.0 system, this operation is performed by the code shown in Figure 6.3.

6.2.2 Brick Colours

Given that each rule will already match only certain configurations of brick colour, and

will build a brick of a specific colour, the cell value information for each rule is already

encoded explicitly within the final architecture. As the rules are extracted according to

6.3 Simple Algorithm Extraction Assumptions 157

brick orderings, the original states for rule’s build cell and neighbourhood brick states are

thus present in each rule.

This process is shown clearly in Figure 6.2. For each brick, we create a copy of the

neighbourhood, including only those bricks whose order is less than the order of the brick

under consideration. For each brick, we produce a rule which matches exactly the local

configuration required to place the brick at that point during construction.

6.2.3 Simple Algorithm Extraction – Summary

Despite the obvious simplicity of this example, it is clear that we can move from completed

architecture to the corresponding rule-set, and in this case with relative ease. Following the

instructions given above, any similarly-tagged architecture can be deconstructed successfully.

Where two bricks were placed by the same rule, two identical rules will be extracted. In this

case we follow the conventions set out in the Nest-2.11.1 software, and remove any duplicate

rules from the algorithm (since the result of either firing will be identical).

6.3 Simple Algorithm Extraction Assumptions

The operation above is sufficient to successfully extract a stigmergic algorithm from a struc-

ture, given the following assumptions:

Ordering The order tagging process exists, was performed correctly during simulation, and

has not been altered in any way.

Brick State The colour of each brick within the architecture is unchanged from the brick

placed during construction.

That it to say: if we know the order in which the bricks were placed, and the colours of

those bricks, we can easily extract the stigmergic algorithm which constructed the architecture

under consideration. But what if these cannot be guaranteed?

Any modification to the order will necessarily alter the structure of the rules extracted

and produce a set of rules which does not correspond to those which originally built the

6.3 Simple Algorithm Extraction Assumptions 158

4

2
3

5

1

4

2
1 2

3

1

4
1

2

2
3

5

5

2
3

Figure 6.4: An alternative ordering on the bricks from the simple structure shown in Figure
6.2 produces different rules.

structure. This can be clearly seen in Figure 6.4, where a different ordering has been applied

to the architecture from Figure 6.1. Due to the small size of this architecture, the space

of possible rules is quite constrained, and only a single rule differs in this case. Larger

architectures will provide greater scope for deviation.

Similarly, the states of the bricks in the structure directly (and obviously) correspond to

the brick states built by each rule. If these are modified after construction, but before rule

extraction, the resulting rules cannot correspond to those used during the simulation.

6.3.1 The Assumption of Coordination

The following assumption is also implicitly present if any undertaking of rule extraction is

to be successful:

Existing Coordination The stigmergic algorithm which generated the structure is known

to reliably produce the same structure each time it is used.

If we were to submit a properly ordered maze structure as shown in Figure 5.4, we would

certainly successfully extract the structure of the rules used in those simulations3, but as

demonstrated in that figure, subsequent simulation using the same stigmergic algorithm

might produce a radically different structure.

3Actually distinct rotated versions would be produced, since the specific simulations shown in Figure 5.4
allowed rotations. In other words, where two rules were allowed with four valid rotations, up to eight rules
might be extracted.

6.4 Practical Algorithm Extraction: A First Attempt 159

The usefulness of such an extracted algorithm is directly tied to the perceived merits of

this type of architecture. Just as was demonstrated using Figure 5.4, such structures may

exhibit constant properties in terms of density ratios or particular structural features, and

such properties might be desirable regardless of the exact form of the resulting architecture.

However, we have stated that our goal is “to discover the minimum set of rules necessary

to produce a given architecture”, rather than a given architectural feature (something much

harder to identify), and so we will be attempting to reproduce the input structure exactly.

6.4 Practical Algorithm Extraction: A First Attempt

Clearly the extraction process as it currently stands falls some way short of being useful; it

relies on the previous existence of a stigmergic algorithm to do most of the conflict man-

agement already. Furthermore, most of the assumptions we have relied on thus far become

invalidated if we do not presume that the structure we are presented with was originally the

product of a stigmergic simulation: no ordering will have been applied if the architecture was

not produced during simulation, and brick colours may be modified without our knowledge.

Despite these large assumptions this process will be the basis for our automatic algorithm

extraction approach.

Since the act of matching rules during simulation implicitly defines a brick ordering, by

determining a brick ordering a posteriori we are implicitly defining the structure of the rules.

Similarly, the presence of differing brick states serves to manage the firing of conflicting rules

– rules which match against identical arrangements of bricks should use alternative brick

states to prevent the firing of rules where it would cause deviations from the desired output

architecture.

From this point we no longer assume that out input architecture is the product of an

existing stigmergic algorithm. As a result of this, the bricks carry neither the order tags

nor the state information that could only have been created as this architecture was built

during such a simulation. Effectively, we must operate on architectures with only information

regarding brick positions, without any knowledge of ordering, or brick colour.

In this section we will consider the simplest method for extracting a reliable stigmergic

6.4 Practical Algorithm Extraction: A First Attempt 160

a

c
d

e

b

1) a–b–c–d–e
2) c–a–b–e–d
3) e–c–a–b–d

4) a–e–b–c–d

Figure 6.5: Random brick ordering for a simple 5-brick architecture. Orderings 1, 2 and 3
are valid while ordering 4 is invalid for the given labelling/architecture.

algorithm from a such an architecture.

A Note Regarding Brick Colours and Architectures

In this investigation, as in the original Nest experiments, brick colours are only present as a

stigmergic aid, and do not represent any desired final aesthetic. Therefore, two architectures

which are structurally identical – that is, the relative arrangements of bricks are the same –

are considered to be identical, regardless of the colours of individual bricks.

6.4.1 Ordering

The simplest method of ordering the bricks with an architecture is to simply assign an

ordering at random. The number of possible brick orderings for an architecture of size

N is given by N !, so for example the number of ordered brick sequences for a 10-brick

architecture is 10! = 3628800. Being factorial, for larger architectures the number of brick

orderings rapidly increases as the architecture size grows (20! ≈ 2.433× 1018). However, not

all permutations of bricks can be considered valid for the purposes of rule extraction.

Invalid Brick Ordering

In the Nest simulation systems, bricks can only be placed in direct contact with either a face

or an edge of an existing brick (aside from the first brick placed, which is a special case).

However, following order 4 in Figure 6.5, brick e is placed before either b or c, the only cells

which are adjacent to it in the final architecture. In this ordering, brick e is an orphan brick.

It is assumed in Nest simulations that the initial environment contains a single brick.

This single brick corresponds with the rule extracted for brick 1 in Figures 6.1, 6.4 and 6.6.

6.4 Practical Algorithm Extraction: A First Attempt 161

1

4
5

2

3 2
3
1

4
5

2

simulation

Figure 6.6: Two single-brick rules are produced with the random brick ordering of the
simple architecture. The resulting simulation features many unconnected
orphan bricks.

During simulation, this ”starting” rule is typically disabled, because it can fire anywhere in

the lattice where there is no adjacent brick. Instead, it is assumed that this rule fired at

time t = 0, and produced the single brick present in the initial environment.

If rules of this form (which match against empty neighbourhoods) are present and act-

ive during the simulation, they could fire at almost any location within the empty lattice.

Because there are no structural features (in the form of bricks of specific colours within the

neighbourhood) to constrain firing of this rule, its behaviour is unmanageable. Figure 6.6

demonstrates a random order which produces two single-brick rules rather than one.

Generating Valid Brick Orderings

To avoid this, ordering the bricks within an architecture must take into account their struc-

tural relationship. The simplest way to produce a valid random ordering is to select the first

brick at random and then construct a random tree from the graph formed by the directional

links (i.e. the adjacent faces) between bricks, ordering the bricks as they are added to this

tree.

This is illustrated in Figure 6.7: brick b is selected randomly as the initial brick. From b

we can reach either a or c, giving us our initial frontier. We can select any brick from the

frontier as the next brick in our ordering. After choosing a, our frontier remains the same as

there are no bricks connected to a that were not already present in the frontier. Therefore,

c must be the third brick in our ordering. Because both d and e are adjacent to c, they can

6.4 Practical Algorithm Extraction: A First Attempt 162

a

c
d

e

b

Order Frontier
b a, c

b, a c
b, a, c d, e

b, a, c, e d
b, a, c, e, d ∅

Figure 6.7: Producing a random valid order by performing a random walk over the graph
of bricks.

be added to the frontier, and selection continues until the frontier is empty.

At each step we select the next brick in the order from the search frontier (the set of bricks

which have yet to be visited but which are adjacent to bricks we have previously ordered).

In this manner, a valid ordering and thus a valid set of rules can reliably be generated. The

Ruby code which produces these orderings is shown in Figure 6.8.

6.4.2 State Assignment

As stated in Section 6.3, once the bricks have been ordered the structure of the rules can be

determined by a very simple extraction process. Given our revised assumptions, all bricks

within the structure are assumed to have a single, uniform value, and therefore all of the

rules we will extract will build bricks of the same colour. We can see the results of applying

the ordering from Figure 6.7 to our simple architecture in Figure 6.9.

At this point, any undesired post-rules (see Section 5.4.1) which may fire out of sequence

must be managed. Since we are now experienced at identifying simple post-rules, we can

clearly see that rules 2 and 4 in Figure 6.9 are self-activating (see Section 5.5.4), given the

uniform brick colours present in the rule.

Futhermore, rule 4 is a post-rule of rule 1 (the initial brick), rule 2 is a post-rule of rule

5, rule 3 is a post-rule of rule 5 and vice-versa. Each of these conflicts arises purely from

the arrangement of bricks in the rule neighbourhoods, and if we are to succeed in precisely

replicating the original structure, each one of these undesired post-rules must be managed

such that during simulation the rules will fire in proper sequence and construction will not

continue once the final architecture has been produced.

This is most simply achieved by assigning each brick a unique colour. This guarantees

6.4 Practical Algorithm Extraction: A First Attempt 163

choose a random start cell
startcell = architecture.brickArray.randomElement

orderArray = [startcell] # create a new array with this single element
frontierArray = [startcell] # create the frontier array

currentOrder = 0

start a random walk
until frontierArray.empty? do

select a random element from the frontier
tmpCell = frontier.randomElement

get an array holding all the neighbouring brick from this brick
remove all elements from this array which are empty cells, or
which are bricks that are already present in the order
neighboursArray = tmpCell.neighbourhoodArray
neighboursArray.delete_if { |cell|
(cell == nil) or (orderArray.include?(cell)) or (cell.isEmpty?)

}

if neighboursArray.empty?
if there are no neighbouring bricks which are currently
unordered, remove this cell from the frontier
frontierArray.delete(tmpCell)

else
otherwise, pick a random neighbour and add it to the
array of ordered cells, and to the frontier and set the
order of this brick, incrementing the counter
nextCell = neighboursArray.randomElement
nextCell.order = (currentOrder += 1)
orderArray << nextCell
frontierArray << nextCell

end

end # (of random walk)

Figure 6.8: The algorithm for assigning a random, valid ordering to an architecture

6.5 Simple Stigmergic Script Extraction: Summary and Evaluation 164

2

3
5

4

1

2

3
1 2

1
3

3
5

4 5
4

3

4

1
2

3

Figure 6.9: The random ordering from Figure 6.7 is applied to the simple architecture from
Figure 6.1 (minus brick colour information), and rules are extracted.

2

3
5

4

1

2

3
1 2

1
3

3
5

4 5
4

3

4

1
2

3

simulation

Figure 6.10: Applying a unique colour to all bricks removes all post-rule conflicts and self-
activating rules from the stigmergic algorithm. The simulated architecture
matches exactly the input architecture specified in Figure 6.1.

that every rule matches a unique neighbourhood, and therefore can only fire at one specific

point during the construction of the architecture. Figure 6.10 illustrates this, and it can be

clearly seen that all post-rule conflicts have been removed. Finally, a simulation using this

extracted rule-set does indeed produce exactly the architecture given as input to our system.

6.5 Simple Stigmergic Script Extraction: Summary and

Evaluation

The simplest method of extracting a stigmergic script from an architecture has been outlined

above. The two keys steps in this process are

1. Assign a random valid order to the bricks within the architecture

2. Assign a unique colour to each brick within the architecture to avoid any

6.5 Simple Stigmergic Script Extraction: Summary and Evaluation 165

extraction simulation

a)

simulationextraction

b)

c)

extraction

simulation

Figure 6.11: Some examples of architectures to which rule extraction has been applied.

potential rule conflicts during simulation.

The two steps of ordering and state assignment are sufficient to produce a set of rules

which reliably reproduce the architecture supplied to the process. Most importantly, this

process shows that any architecture can be decomposed into a set of stigmergic

rules. This is a very important point if any further progress in the development of automatic

extraction methods is to be successful: no architecture exists, representable within the limits

of the Nest-3.0 system, that cannot be decomposed using this technique. Some examples

are shown in Figure 6.11.

These processes are almost independent, but it can be seen in Figure 6.12 below that

the ordering has a significant effect upon brick state assignment. Because brick ordering

defines the structure of the rules within the algorithm, a different number of colours may be

required depending on the relationships between those rules.

6.5 Simple Stigmergic Script Extraction: Summary and Evaluation 166

3

1 2 6

4

7

5

5

1 2 3

6

4

7

3
colours

4
colours

Figure 6.12: Differing brick orderings produce different minimal orderings.

6.5.1 Properties of Extracted Stigmergic Algorithms

If this process is used, several properties of the resulting stigmergic script can be predicted:

Number of Rules – The number of rules in the script is exactly equal the number of bricks

in the architecture.

Number of Unique Brick Colours – The total number of brick colours in the script is

exactly equal to the number of bricks in the architecture.

While we can now guarantee valid, working output for any architecture, the quality of this

output is hardly comparable to those ‘biological’-like scripts from which this entire system

was inspired. If we intend to “discover the minimum set of rules necessary to produce a given

architecture”[156] then we have fallen short: the algorithms in Figure 6.11 produced by this

simple technique are certainly not minimal. As can be seen in Figure 6.13, it is possible to

devise a stigmergic algorithm which builds a perfect ring of six hexagonal bricks using less

than six states. The algorithm shown as a1 demonstrates a reduction of states required by

that particular rule-set based on a hand-calculated consideration of the interaction between

the rules, and algorithm a2 shows the optimal algorithm, derived by hand. Both of these

algorithms represent improvements over our initial attempt.

6.5 Simple Stigmergic Script Extraction: Summary and Evaluation 167

extraction simulation

a

extraction simulation

a

1

2

Figure 6.13: A ring-building algorithm which uses only four brick colours, rather than the
six required by algorithm a) in Figure 6.11, and a manually-derived optimal
algorithm for the same structure requiring only five rules and three brick
colours.

6.5.2 Quality of Extracted Algorithms

Using this initial automatic algorithm extraction technique, the set of rules extracted pre-

cisely maps to a step-by-step plan for the construction of the entire structure, a feature

which appears to be incompatible with the ‘spirit’ of stigmergy; there is no global blueprint

present within ants and bees during the construction of their nest architectures.

On the other hand, this mechanism provides a single guarantee which does not seem to be

present within the biological examples of stigmergy: the desired architecture is reproduced

with total accuracy. Reliable production of specific architectural features is certainly an

important consideration if stigmergic techniques are to be successfully applied to complex

tasks.

Can the complexity (in terms of either numbers of rules, numbers of brick values, or

both) of the extracted stigmergic script be reduced, without removing the accuracy of re-

production? What is the exact relationship between these two potentially-conflicting yet

desirable traits? An understanding of these aspects of stigmergic algorithms is fundamental

to an understanding of the behaviour and design of stigmergic systems.

6.5 Simple Stigmergic Script Extraction: Summary and Evaluation 168

6.5.3 Improving Algorithm Extraction

As mentioned above, two processes are involved in the automatic extraction of stigmer-

gic algorithms from existing structures. In order to improve the quality of the extracted

algorithms, we must consider each of these processes working both independently and in

union. In the following chapters, optimisation of both the state assignment and brick order-

ing processes will be considered.

Chapter 7

State Assignment

As seen in Chapter 6, the basic process of stigmergic script extraction can be split into

two near-independent processes – brick ordering and brick state assignment. We will now

consider these separately before looking in more detail at how they interact.

When comparing two stigmergic scripts targeted towards solving the same problem, all

other aspects being equal the script which requires the least information is preferred – a

lower number of brick colours and smaller algorithms allow the agents implementing these

algorithms to be simpler and cheaper to produce. In the simple extraction method described

in the previous section, the number of unique brick colours required for an architecture was

exactly equal to the number of bricks in that architecture. Below we will discuss in more

detail the role that brick colours play in stigmergic scripts, and begin to exploit some of the

theoretical insights we obtained from the generative algorithm investigation in Chapter 5 to

reduce the complexity1 of the produced stigmergic algorithm.

7.1 Brick States and Rule Conflict Management

As discussed in Section 6.4.2, the only purpose of brick states is to ensure that rules which

match local brick environments during construction only fire when they are required. It

follows that differentiating rules according to brick states is only important when there is

an actual threat that some rule may fire out of sequence. Fortunately we have already at

1See Section 10.3 for a consideration of the complexity of stigmergic algorithms.

7.2 Post-Rule Conflict Resolution 170

our disposal a mechanism for analysing and reasoning with the causal dependencies between

rules – post-rules (see Section 5.4.1).

Typically a rule will have a large number of post-rules. When considering these from the

perspective of systematic generation of sequences of rules, the combinatorial explosion is, as

we have seen, prohibitive of significant further investigation. However, when considering an

architecture which already exists, we have gained a significant advantage over our previous

position: for each rule we have extracted from the input structure, we are now capable of

identifying exactly which rules present within our algorithm could fire next. For each rule

we have extracted based on our brick ordering, we can determine which of the set of all

extracted rules are post-rules.

For each brick placed in the desired architecture, we know those bricks which are neigh-

bours in the final construction. Therefore, we know which rules ought to fire to place each

of those bricks, but more importantly we can identify those rules which should be prevented

from firing and placing neighbours in this position. Only these undesired or conflicting post-

rules must be managed using differing brick values to ensure that the resulting structure

does not diverge from our desired output.

7.2 Post-Rule Conflict Resolution

In this section we will explore how we can use post-rule generation to assign brick colours

and enable stigmergic algorithms to build precise architectures.

7.2.1 The Simplest System, Revisited

Let us first consider another simplest-case example. Figure 7.1 shows a simple two-brick

architecture and the results of simple rule extraction. For convenience, algorithms may no

longer show the initial rule containing a single red brick (such as that which would place

brick 0 in Figure 7.1, since this rule is present in all algorithms.

As can be seen from the simulation of this extracted algorithm, the resulting architec-

ture does not match the input structure. The single rule continues to fire and produces a

7.2 Post-Rule Conflict Resolution 171

0
1 1

1
X

1

extraction

post-rules

simulation

brick match

1
state assignment

Figure 7.1: State Assignment in a simple, single-rule algorithm.

potentially-endless column of bricks. It can be clearly seen (and automatically determined,

as described in Section 5.4.1) that this rule is self-activating2, and this post-rule conflict

must be managed if the algorithm’s behaviour is to be contained.

During post-rule calculation, we determine which of the empty cells within a rule might

be the site of a successive rule match. In situations where we know the actual set of rules

which can fire during the simulation, we can further determine which of the bricks in a

post-rule match against specific bricks in the original rule, and thus determine those bricks

which can be used to control matching between these rules.

In Figure 7.1, the position of the post-rule match is indicated in the original rule by

a greyed x. Knowing this, we can see the brick ‘overlap’ between the two rules, and the

matching bricks are indicated on the figure. Since we want to prevent this match, we can see

that we must alter the colour of one of these bricks in order to stop the rule firing again. We

have modified the build-cell of the original rule, rather than the edge-cell of the post-rule,

since in this case they are actually the same rule and the latter modification would also

prevent the rule matching against the initial red cell. Now that the rule is modified, we are

left with the same system shown in Figure 5.7 (disregarding the difference in geometries),

and we can see that in simulation the correct structure will be reproduced.

2See Section 5.5.4

7.3 From One to Many: Desired Post-Rules 172

0

1
2

rule
extraction

1

0
1 21

2
210

1

Rules Post-Rules

X
1 = 11 ≠ 0

2 ≠ 0 2 ≠ 1

brick match

brick match

Figure 7.2: A stigmergic system with two rules. Post-rule conflicts are identified, along
with the specific brick matches.

7.3 From One to Many: Desired Post-Rules

Let us now consider a slightly more complex system, such as the one depicted in Figure 7.2.

In this system we now have two rules to consider: Rule 1 and Rule 2. Each of these rules

has two post-rules, as shown in the figure. Rule 1 has both itself, and Rule 2 as post-rules.

We do not wish Rule 1 to fire repeatedly (as seen initially in Figure 7.1), but we do require

that Rule 2 fire directly after Rule 1.

We can determine this automatically by examining the brick matches for the post-rules

of Rule 1. For the first post-rule, brick 0 matches against brick 1 (the brick placed by

Rule 1). Because Rule 1 is only to match against brick 0, and not brick 1, we know that

this represents a conflict which must be resolved. On the other hand, the second post-rule

matches brick 1 against brick 1, indicating that this post-rule is intended to fire next in the

building sequence. This post-rule therefore does not produce any conflict, so we shouldn’t

consider it any further. Put simply, if the matched brick id is equal to the brick id of the

rule, this post-rule is desired and does not require modification of brick colours to prevent

it from firing.

7.4 Brick Tagging 173

1
0
1

2 210
1

Rules Post-Rules

brick match
1 ≠ 0 [RED]

2 ≠ 0 [RED] 2 ≠ 1 [BLUE]

1

2

Rules after
Assignment

brick match

States
Used

RED,
BLUE

RED,
BLUE,

GREEN

Figure 7.3: State assignment using the rules from Figure 7.2.

7.3.1 State Assignment with Two Rules

Once the desired post-rules have been eliminated, all remaining post-rules must be considered

for brick colour assignment. This is shown in Figure 7.3. The remaining conflict for Rule 1

lies between brick 0 and brick 1. Both bricks are red, so we set the build brick for Rule 1

to be BLUE, removing the conflict. We also add BLUE to the set of states in the algorithm.

Rule 2 has two undesired post-rules, with brick 2 built by the rule matching against

bricks 0 and 1. The conflicting bricks are RED and BLUE, so we must again add a new state

– GREEN – and assign this value to the build brick of Rule 2. The mechanism used to select

the colour for assignment should now be quite clear: as we consider each rule, we have a set,

S containing all of the brick states used by the algorithm thus far; to select the new state,

we produce the set difference S−U , where U is the set of all states used by matching bricks.

If S − U = ∅, we generate a new state n and add it to S for use as we continue.

7.4 Brick Tagging

Our state assignment mechanism is taking shape, but there are yet more complex examples

which produce new problems to be considered. The state assignment of a ring structure, as

shown in Figure 7.4, demonstrates the final significant failing in our current method. The

7.4 Brick Tagging 174

ring structure is ordered arbitrarily and rules are extracted, as shown at the very top of the

figure, and each rule is then considered in turn. In this example, in order to be entirely

general, all bricks are set to have the state UNDEFINED, rather than RED as in previous

examples. This will clarify the assignment of states during the process.

The first rule places our initial brick within the environment. It has five post-rules, one of

which can be safely ignored as it is the rule which builds an adjacent brick – a ‘desired’ post-

rule. For the remainder of the rules, we determine which bricks within those rule matched

bricks in Rule 1 (shown in the figure as white bricks with coloured ids, grey to indicate

those bricks are UNDEFINED in this particular instance). We then collect the set U of all

brick colours used in those matching bricks, minus the value UNDEFINED, which represents

an absence of colour, rather than a colour itself, in order to determine what colour we may

assign to the build brick of this rule. The reasoning behind this is as follows: in order for

a post-rule to fire, the colour of the brick this rule places must be identical to that of the

matched brick in the post-rule. By assigning the colour such that it matches none of the

colours of those bricks within post-rules, we are ensuring that those post-rules can never fire

as a result of the placement of this brick.

U is empty for the post-rules of Rule 1, and subtracting this from the set of all available

states, S (again initially empty) gives us yet another empty set. In this situation, as described

above, we must create a new brick colour – RED – and both add this to the set of available

states, and assign it to the build brick of the rule currently being considered. Thus at the

end of processing Rule 1, we have assigned RED as the colour of brick 1.

Next, Rule 2 is considered, with only a single post-rule conflict. The matching brick in

this case is RED, leaving us with no further available states, so a new state BLUE is added

and assigned to brick 2. Rule 3 continues in this manner, requiring a further colour GREEN

to be added to the set of valid states for this algorithm.

When considering Rule 4, we determine the states of the matching bricks within the

post-rules to be {BLUE,GREEN}, leaving us with RED available for assignment to brick 4. This

process continues similarly for Rules 5 and 6. In total, our algorithm has determined that

this set of rules requires four states to operate as intended.

7.4 Brick Tagging 175

1 2
35 4

6
1

1
2

2
3

3
4

4
5

1

5
6

1
1

2
2
3

3
4

4
5X

1
1

2
1

2
2
3

1
2

2
3

1
2

2
3

3
4

X
X

1

5
6

1

5
6

2
3

3
4

3
4

3
4

2
3

4
5X

4
5

4
5

4
5

3
4

1

5
6

1

5
6X

1

5
6

1

5
6

4
5

UNDEFINED
brick

3 matching
brick

states { }
- used { }

» new state R

states { R } - used { R } » new state B

states { R,B } - used { R,B } » new state G

states { R,B,G } - used { B,G } » R

states { R,B,G } - used { R,G } » B

states { R,B,G } - used { R } » B

1

5
6X

Figure 7.4: A more complex state assignment example. Rule 5 is detected as a post-rule
of Rule 1, but the later assignment of colour RED to brick 4 fails to take this
information into account. The resulting algorithm is flawed. All bricks are
initially of UNDEFINED (grey) state. Matching bricks in post-rules are shown as
unfilled with coloured id. ‘Desired’ post-rules are crossed out.

7.4 Brick Tagging 176

7.4.1 Missing Post-Rule Information

However, closer inspection of the stigmergic algorithm we have produced shows that it con-

tains a signficant flaw. Rule 5 (highlighted in Figure 7.4, which matches against a single red

brick, could easily fire after Rule 1 places the initial brick. The reproduction of our original

structure is therefore not guaranteed. How was this error produced?

Rule 5 was noted as a post-rule of Rule 1 when state assignment was performed on Rule

1. At this point, we determined that brick 4 matched against brick 1, but at that point

in the algorithm brick 4 is UNDEFINED and thus not perceived as having a conflicting state.

Later in the process when we are assigning a state to brick 4, we cannot take into account

the conflict between this brick as it appears in Rule 5, and the brick placed by Rule 1, since

neither of these rules appear as post-rules of Rule 4.

Because brick 4 was UNDEFINED at this stage, its state does not affect the colour assigned

to brick 1, but we have determined that these two bricks must not share the same colour. In

order to reintegrate this information into the state assignment process, we can pursue two

alternative methods of resolution, outlined below.

7.4.2 Assigning Values to Post-Rule Bricks

At the point where we realise that brick 1 must be differentiated from brick 4 (and in fact

bricks 2, 3 and 5), any of those bricks which are UNDEFINED must be defined in order to

remove the conflict. The results of such a process are shown in Figure 7.5. We first assign

a colour to brick 1 – RED, as before. To resolve the remaining conflicting UNDEFINED bricks,

we can assign them all identical values, as shown in part a) of Figure 7.5. The specific value

derived using S−U as before. We are now guaranteed that none of the remaining post-rules

will fire after Rule 1. However, it is obvious that this scheme is flawed, as in even this simple

example, the resulting Rules 3, 4 and 5 are all self-activating (See Section 5.5.4); we have

introduced as much conflict as we attempted to resolve.

An obvious method to avoid the introduction of such new conflicts is by simply assigning

each conflicting brick a unique colour, creating new colours where necessary. This is illus-

trated in part b) of Figure 7.5. Here we can see there are no self-activating rules, and using

7.4 Brick Tagging 177

1
1

2
2
3

3
4

4
5X

1

1

5
6

a) minimal assignment

1

5
6X

2
3

3
4

4
5

1

5
6

1

b) unique assignment

2
3

3
4

4
5

1

5
6

Figure 7.5: An illustration of post-rule state assignment during algorithm state assigment.
The resulting assignments a) fail to consider the dependencies between post-
rules, and b) introduce more states than are required.

this process will result in an algorithm which successfully and reliably reproduces the input

structure. However, this does not process an algorithm with the minimal number of states.

Within the context of this example, we can see by referring to the hand-tested derivations in

Figure 6.13 that only four colours are actually required for this particular rule set, certainly

not the five we have already introduced in this first step of state assignment.

By assigning colours to bricks other than the build brick of the rule currently being con-

sidered, we do not take into account the intra-post-rule links, and so we cannot make informed

decisions about how best to colour those bricks. The second approach amounts to assigning

unique states as in our original, simple approach, and fails to produce optimal assignments.

We must devise some means of resolving these conflicts without assigning colours to bricks

within post-rules.

7.4.3 Tagging

The brick-match information determined at each stage throughout the state assignment

process is the key to this problem. This information must be preserved when it cannot be

7.4 Brick Tagging 178

acted upon directly. We will now outline our chosen means to achieve this, and in doing so

produce an algorithm which is capable of assigning the minimum number of brick colours to

any stigmergic algorithm we might consider here.

When our algorithm is processing Rule 4, if it was aware of the colour restriction between

brick 1 and 4, it could use this information to include the colour of brick 1 in the set of

colours which are not available for assignment. By ‘tagging’ brick 4 with the colour of brick

1, the algorithm now has this information available at the required stage of processing. This

is depicted in Figure 7.6. Once the ‘desired’ post-rules have been removed, those matching

bricks which are UNDEFINED are tagged with the colour of the build brick currently under

assignment. In this particular example, our initial rule3 has four unresolved post-rules, so

the matching bricks in each rule are tagged with the colour of brick id 1, RED.

In this example, the state assignments proceed as before (Figure 7.4) until we reach Rule

4. Here we can see the matching bricks in the post-rules indicate that neither BLUE or GREEN

can be assigned to brick 4. However, upon examination of the tags within brick 4, we also

note the previous conflict with brick 1 (RED), and so this colour is added to the set of used

colours. The selection of possible brick colours is modified from S−U to S− (U ∪T) where

T is the set of all colours assigned to bricks within the tags of the current brick. Brick 4

is therefore assigned the new colour YELLOW, rather than RED. The remainder of brick state

assignment proceeds in this manner, considering the previous post-rule conflicts with each

brick using tag values.

7.4.4 Minimal State Assignment

The final algorithm and structure is shown in Figure 7.7. We can see our output stigmergic

algorithm uses only four colours, rather than the six required by our simple extraction

technique. Furthermore, the number of colours determined by this extraction algorithm is

the minimum number of colours required to reliably and accurately reproduce the rule set

given, since a new colour is only added to the stigmergic algorithm when required to resolve

3It is crucial that we consider the initial rule (even if we do not display this rule or explicitly describe it)
– when performing state assignment we must consider its post-rules if we are to successfully derive a valid
algorithm.

7.4 Brick Tagging 179

1
1

2
2
3

3
4

4
5X 1

5
6

1

5
6X

2
tag: R

3
tag: R

4
tag: R

5
tag: R

1

3
4

3
4

3
4

2
3

4
5X

4
tag: R states { R,B,G } - (used { B,G } ∪ tags { R }) » new state Y

4
5

4
5

4
5

3
4

1

5
6

1

5
6X

1

5
6

1

5
6

4
5

5
tag: R states { R,B,G,Y } - (used { R,G,Y } ∪ tags { R }) » B

6
tag: Ø

states { R,B,G,Y } - (used { Y } ∪ tags { }) » R

Figure 7.6: State assignment using ‘tagging’. Assignment proceeds as Figure 7.4 until the
consideration of Rule 4. Previous brick match conflict information is combined
with current post-rules to determine the new brick colour.

7.5 The Increasing States Algorithm 180

extraction simulation

Figure 7.7: The final, state-optimised algorithm, shown with simulation results.

a conflict between post-rules already present within the rule set.

7.5 The Increasing States Algorithm

The algorithm presented above has been named the Increasing States Algorithm, due to

the gradual addition of brick states as each conflict is resolved. A more formal description

of the algorithm is found in Figure 7.8, the Ruby implementation is outlined in Figure 7.9

An arbitrary architecture is processed in Figure 7.10, which demonstrates each key stage

during the Increasing States algorithm. It is important to note in this example that during

the processing of Rule 5, the YELLOW colour from brick 4 in Rule 7 is not included in U ,

because the post-rule conflict is already resolved, since this post-rule requires both a match

between bricks 5 and 4, but also bricks 2 and 3. However, brick 2 is already set BLUE and

brick 3 is set GREEN, so a match of this post-rule is already prevented. This is indicated by a

large red cross through the rule. In total, four states are required to build this architecture.

7.6 State Assignment and Rotated Rules

Up to this point it has been assumed that rule rotations are not matched during simulations

using these extracted stigmergic scripts. In principle there would appear to be no reason for

this restriction; all we are required to produce for consideration is a set of post-rules, and

rotated post-rules can be easily determined using the the rotation techniques described in

Sections 4.5.2 and 4.6.1. However, as will be shown below, this is not the case.

Figure 7.11 demonstrates the fundamental problem produced by allowing rule rotations

during simulation. The figure presents a small fragment of the rule extraction process,

7.6 State Assignment and Rotated Rules 181

To assign the minimal number of brick colours to a rule set R:

1. Let the set of all states in the algorithm S = {RED}

2. ∀r ∈ R:

(a) Generate the post-rules Pr for r

(b) Pr = Pr ∩ R – include in Pr only those post-rules actually
in our rule-set

(c) Pr = Pr −D(r, Pr), where D(x, Y) is the set of all post-rules
in Y which are differentiated by state from x.

(d) t(rbuild) is the set of values of all bricks for which this rbuild

was tagged

(e) Let B be the set of those bricks from the post-rules Pr which
match against the build-cell of r, rbuild

(f) U = ∪b∈Bvalue(b) – the set of all values of the bricks in B

(g) V = S − (U ∪ T)

(h) If V = ∅ then

i. Create a new state s

ii. S = S + s

iii. V = {s}
(i) value(rbuild) = v where v ∈ V

(j) Pr = Pr −D(r, Pr)

(k) Let B be the set of those bricks from the remaining post-rules
Pr which match against the build-cell of r, rbuild

(l) ∀b ∈ B : t(b) = t(b) + value(rbuild) – tag each brick with
the value of rbuild

Figure 7.8: The Increasing States Algorithm.

7.6 State Assignment and Rotated Rules 182

set all cell states to UNDEFINED
architecture.setBricks(CELL_UNDEFINED)

rules = architecture.rules.to_a.sort {|x,y| x.order <=> y.order }

tags = Array.new(@architecture.numBricks)

rules.each { |currentRule| # for each rule currentRule in rules

find all postrules Rp for Rx
postrules, matchingBricks = currentRule.postrulesWithCells(@rules)

we create a simple array of index values so we know which
postrules still require some consideration
postruleIndexes = []
postrules.length.times { |x| postruleIndexes << x }

firstly remove any postrules which are already differentiated
with state
removeDifferentiatedPostRules(postRules, postruleIndexes)

assign a value to the build brick of the current rule, based
on the matchingBricks, brick tags and available states.
processRuleCells(matchingBricks, postruleIndexes,

currentRule, postrules)

Again, remove any newly-differentiated post-rules
removeDifferentiatedPostRules(matchingBricks, postruleIndexes)

Tag any UNDEFINED bricks in the remaining post-rules
tagRemainingPostRuleCells(matchingBricks, postruleIndexes,

currentRule, postrules)

} # end of ’rules.each’

Figure 7.9: The Increasing States Algorithm implementation, in Ruby.

7.6 State Assignment and Rotated Rules 183

7
3
1

4

2
6

5
ordering rule extraction

1 1
2

3
1

3
4

2
5 1

2
6

7
3

4

1 12 34

4 3
7

1
3

25X 1

12

X
12 34

25
12 6X X 12

1
3

34 25
1
3 X 1

3

34 12
1
3

34
4 3

725 X 34

25 12
1
3

34
25 X 25

12 6

4 3
7

1
3 4 3

7

12 6

S = {RED}, U = {}
tags(1) = { }

2, 3 tagged RED

S = {RED}, U = {RED}
tags(2) = {RED}
3 tagged BLUE

S = {RED,BLUE}, U = {RED,BLUE}
tags(3) = {RED,BLUE}

S = {R,G,B}
U = {R,B,G}
tags(4) = { }

S = {R,G,B,Y}
U = {R,G,B}
tags(5) = { }

S = {R,G,B,Y}, U = { }
tags(6) = { }

S = {R,G,B,Y}, U = {R}
tags(7) = { }

no
post-rules

1 1
2

3

1 3
4

2
5 1

2
6

7

3
4

Figure 7.10: The Increasing States algorithm performed on an arbitrary structure.

7.6 State Assignment and Rotated Rules 184

state
assignment

no rotation

-1 rotation
+1 rotation

... ...

... ...

Figure 7.11: Despite state assignment, if rotations are allowed the progress of construction
is not deterministic.

indicating that somewhere in this algorithm, the simple rule shown4 is extracted. State

assignment will ensure that differing colours are assigned to each of the bricks, as we have

seen previously. However, if rotations of the rule are allowed to match, we see that if a

situation such as that displayed on the right is encountered during the simulation, this rule

can match in three different rotations, each producing a unique overall structure.

Most importantly, there is no way to control which rule rotation is used in this situation.

To control construction in this abstract stigmergic system, the two mechanisms we have

available to constrain building behaviour are local structure and brick colouring. It is clear

in this situation that no combination of brick colours could prevent divergence from the

desired architecture. This is an example of a conflict where brick state assignment cannot

be used to control how the rule matches the local environment. The symmetries present in

this situation prevent any effective differentiation.

For this reason, from this point forward extracted algorithms will not be simulated al-

lowing rotations of their rules. This problem is a very specific instance of the larger issue of

reproductive accuracy, considered in detail in Chapter 9.

4This rule has now been considered several times, along with its cubic and rotated counterparts: see
Figures 5.6, 5.7, 5.8, 5.20, 7.1, 7.2, 7.3

7.7 Evaluation of Increasing States Algorithm 185

7.7 Evaluation of Increasing States Algorithm

We have now seen that ‘bottom-up’ investigation – wherein we try to understand the global

behaviour and capabilities of abstract stigmergic systems from the structure of the rules

themselves – is computationally intractable. So, we have presented an alternative, more

practical ‘top-down’ approach, wherein we exploit the information already present within an

architecture to decompose it into a corresponding stigmergic algorithm. We have seen:

A stigmergic algorithm can be extracted from any architecture – as shown by the

simplest extraction technique in Section 6.2, once a valid brick ordering has been

established, in whatever manner, rules can be extracted and bricks coloured in such a

way that guarantees accurate reconstruction.

The Increasing States algorithm – which produces minimal brick colourings for any

given stigmergic algorithm, since new brick colours are only added to the algorithm

when absolutely required. This is achieved whilst ensuring that the architecture will

be constructed accurately.

As stated above, the Increasing States algorithm produces minimal brick colours for any

specific rule set, but the structure of the rules depends completely on the ordering used to

extract them. Therefore, different orderings will result in differences in the minimum number

of colours for any given architecture.

The two steps required to extract a stigmergic algorithm were outlined as below in Sec-

tions 6.5:

1. Assign a valid order to the bricks within the architecture

2. Assign a colour to each brick within the architecture

We have considered in detail the latter, and produced the Increasing States algorithm as

a solution to this half of the extraction process. In the following chapter, the orderings

process will be examined, and we will begin to make our conclusions regarding the nature

of stigmergic algorithm extraction.

Chapter 8

Ordering

In Section 6.4.1 the issue of providing a valid ordering was introduced, and it has been

shown that once the order in which the bricks were placed is established, the structure of

the rules can be easily extracted, and the minimum number of states required to build the

architecture can be clearly established. In this section we will consider the ordering process

itself, and how this affects both the rules extracted and the algorithm produced.

8.1 The Importance of Ordering

The relationship between ordering and extracting compact algorithms was briefly considered

in Section 6.5. As was shown in Figure 6.12, changes in the ordering of the bricks within

an architecture will produce rules with different structures. While the Increasing States

algorithm will produce a minimal set of brick colourings for any particular rule set, that

minimal number depends on the structure of the rules within that algorithm, which in turn

depends on the ordering assigned. In order to determine the absolute minimum number of

brick colours required by an arbitrary structure, we must therefore find the brick ordering

which minimises the results of the Increasing States algorithm.

8.2 Ordering Problems 187

8.2 Ordering Problems

Many interesting ordering problems exist and have been the subject of extensive research.

Perhaps the most famous is the Travelling Salesman Problem[93, 112]1, or TSP. Given a

finite number of ‘cities’ with some pre-determined cost of travelling between each pair, we

must find the cheapest route which allows the salesman to visit all cities and return to his

starting point. If links exist between all cities, then the total number of tours is given by

(n−1)!
2

, where n is the number of cities the salesman must visit.

The TSP problem can be restated as a problem rooted in graph theory, where the cities

are the vertices in a finite complete graph, and integer weights (distances) are assigned to

each edge. The solution to the problem then becomes the derivation of the Hamiltonian

cycle (that is, a cycle passing through all the vertices) with minimum weight.

The TSP problem is a simple-yet-general example of a combinatorial problem, and is

analogous to many real-life problems such as route planning, circuit board fabrication and

job scheduling. The TSP is very easy to describe and yet very difficult to solve since no

polynomial time algorithm is known which can be used to find optimal solutions. As such, it

has become the classic example of an NP-complete problem[71]. An excellent library of TSP

software[136] has been collected, containing many examples and solutions to TSP problems.

8.2.1 Job-Shop Scheduling

The Job-Shop Scheduling problem[91, 62] is perhaps a closer analogue to the brick ordering

problem we wish to consider in this chapter. In this problem a number of ‘jobs’ (processes,

tasks, etc.) must be performed using limited processing resources. For example, with a

limited number of factory machines, a number of ‘jobs’ must be scheduled on those machines;

the optimal solution completes all jobs in the minimum amount of time.

The primary difference between this ordering problem and TSP problems is the additional

constraint that the underlying graph is typically directed and incomplete. In order words,

there are external constraints which insist that some jobs must be performed before others.

1An extensive bibliography of Travelling Salesman Problem information can be found at
http://www.ing.unlp.edu.ar/cetad/mos/TSPBIB home.html

8.2 Ordering Problems 188

Formally stated, the problem graph is described by an acyclic graph:

G = (V, E)

where the vertices represent jobs and the edge (u, v) implies that job u must be performed

before job v.

This more closely matches brick ordering:

G = (B, L)

where B is the set of all bricks in the structure and L the set of neighbourhood links, such

that

∀b1, b2 ∈ B, (b1, b2) ∈ L

if and only if b2 is a brick placed after b1 and b2 is in the neighbourhood of b1.

Just as the TSP has become a standard problem in combinatorial analyis, job-shop

scheduling can be similarly considered prototypical of all constrained combinatorial optim-

isation problems.

8.2.2 Genetic Algorithms for Combinatorial Problems

Due to the NP-hard nature of this family of combinatorial problems, approximate meth-

ods must often be used to search for acceptable solutions. Barring the advent of practical

quantum computing[80] which might give means to search all solutions in parallel, there is

little hope of finding a tractable optimal algorithm for solving this problem.

Instead, approximate methods such as simulated annealing[112, 101], genetic algorithms[127,

78, 74, 24] and various other approximate methods[59, 9, 4] provide a practical, tractable

means of obtaining acceptable, if not optimal, solutions. Using a genetic algorithm to fa-

cilitate this search is now commonplace[6], and has been exploited to great success in both

TSP problems[111] and job-shop scheduling[57].

8.3 Ordering Bricks using a Genetic Algorithm 189

8.2.3 An Overview of the Genetic Algorithm Approach

An outline of the typical sequence of events undertaken when using a genetic algorithm is

shown in Figure 8.1. First a random population of individuals is generated. Each of these

individuals is some representation of a solution to the problem under consideration. For

example, in the TSP context, an individual solution might simply be a list of the cities

to be travelled in the order they should be traversed. From a programming perspective,

these individuals are strings of data. Next, each member of the population is evaluated to

determine the fitness of that particular solution. Those solutions which are fitter than others

are more likely to be selected to produce ‘offspring’ which will be included in subsequent

generations. These offspring are produced using a crossover function, which uses a mix of

data from two ‘parent’ solutions to produce ‘child’ offspring. The solutions are also subjected

to a low probability mutation, in which some small part of the solution string is modified.

The population size is maintained by stripping poor solutions, and the new generation of

solutions is then evaluated and new offspring generated.

The motivation behind this approach is that the children of solutions of high quality

should inherit aspects of their parents which were responsible for their high quality, and as

such, the children of two good solutions may have a higher fitness than either of the parents.

In this manner, the fitness of the population steadily increases until a solution of acceptable

fitness is found.

8.3 Ordering Bricks using a Genetic Algorithm

The two most important steps to take towards reaching that solution are first defining a

fitness function to evaluate individuals, and secondly selecting an appropriate representation

for each ordering solution. Our fitness function is simply the minimum number of brick

colours required by the algorithm produced by this ordering. This can be determined using

the Increasing States algorithm developed in Chapter 7.

The information which must be encoded and tested when evaluating the orderings of

bricks within a structure is the set of choices required to produce a fixed, ordered architecture.

8.3 Ordering Bricks using a Genetic Algorithm 190

1. Create a population P of random solutions

2. Until there exists a solution in P of acceptable fitness

(a) Evaluate each solution s in P with some fitness function
f(s)

(b) Select the fittest solutions in the population and create off-
spring solutions using a crossover operator, to replace less-fit
candidates

(c) Mutate some solutions randomly

Figure 8.1: The typical workflow of a genetic algorithm.

1

4
5

2

3 2
3
1

4
5

2

simulation

Figure 8.2: Two single-brick rules are produced with the random brick ordering of a simple
architecture. The resulting simulation features many unconnected orphan
bricks. Repeated from Figure 6.6.

Fundamentally each choice in this operation results in the selection of the next brick, and

so for an architecture constituted of n bricks, there are always exactly n choices required to

fully order the bricks. For this reason a fixed-length genome representation, or gene string,

is appropriate to our needs.

The method of encoding a solution can have an enormous impact on the speed and effect-

iveness of this process. Typically encodings fall into two categories - direct and indirect.

Each of these will be discussed below.

8.3.1 Direct Encoding of Brick Ordering

The simplest encoding for the ordering of bricks within an architecture is simply a unique

labelling of each brick, followed by the ordering those labels within the genome string itself.

This can be seen in a simple structure in Figure 8.2.

This example illustrates a potential problem with a direct representation - it is very easy

8.3 Ordering Bricks using a Genetic Algorithm 191

 abcde

cdabe

 −→
cut

 ab cde

cd abe

 −−−−−−→crossover

 ababe

cdcde

Figure 8.3: Simple crossover using a direct encoding representation. Invalid orderings are

easily produced as a result of the crossover.

to produce an ordering of brick labels which does not map to a valid ordering of brick placing

during the production of the given architecture.

8.3.2 Crossover using Direct Encoding

The implementation of the crossover operation depends entirely on the nature of the genome

representation. For simple linear-string representations it is simple enough to specify a cut-

point which describes the position in the string at which both candidates are cut, and latter

parts replaced with the corresponding latter part of the partner (Figure 8.3). Many more

complex types of crossover operation are possible, utilising for example a greater number of

cut-points and sophisticated methods for determining the position of these points. However

these are beyond the scope of this investigation; comprehensive surveys [111, 74, 84] are

available for further information.

What becomes quickly clear when applying crossover to solutions within the population

is that the offspring from two valid solutions is rarely a valid solution itself. Invalid brick

ordering has been illustrated previously in Section 6.4.1. The two features of the children

solutions which result in their invalidity are the repetition of bricks within the ordering, and

the ordering itself being now invalid.

8.3.3 Repetition

As can be seen in Figure 8.3, both offspring contain repeated bricks (i.e. ababe features both

brick a and b twice). Obviously this ordering cannot be valid since a brick cannot be built

twice, and furthermore since the solutions are fixed-length some bricks are missing. In such

a case, the duplicate brick labels must be removed and any missing bricks inserted. This

is undesirable for two reasons. Firstly it requires additional computational effort to find

8.3 Ordering Bricks using a Genetic Algorithm 192

 abcdef

fedcba

 −→
cut

 abc def

fed cba

 −−−−−−→crossover

 abccba

feddef

Correction of abccba
Identify error labels ⇒ abccba
Identify missing labels ⇒ def
Remove all duplicates ⇒ abc
Insert missing labels ⇒ abcdef

Figure 8.4: Correction of repeated labels after a crossover operation. The final, corrected
child ordering contains no information from the the second parent. · · ·xbcdevk · · ·

· · · acbedgf · · ·

−→cut

(
· · ·x bcde vk · · ·
· · · a cbed gf · · ·

)
−−−−−−→crossover

 · · ·xcbedvk · · ·

· · · abcdegf · · ·

Figure 8.5: Advanced crossover pattern-finding with a direct encoding representation

duplicates and which brick labels are missing. More importantly, modifying the solution in

this manner destroys information donated from one or both of the parent solutions, reducing

the potential value of the cross-over operation as a whole. This is illustrated in Figure 8.4.

Techniques for implementing cross-over in constrained problems similar to this have

been discussed in particular in the context of job-shop scheduling[169]. One particular

technique[75, 160] which solves the problem of duplicate labels is outlined in Figure 8.5.

This process identifies common subgroups of elements within the parent solution, and swaps

these subgroups between the parents to produce offspring solutions. In the example in Figure

8.5, a subgroup containing the elements b, c, d and e has been identified in both parents.

The order these elements appear is unimportant, only that they appear together as a group.

These subgroups are swapped between the two parents, resulting in offspring with no brick

label duplication.

8.3.4 Structurally Invalid Orderings

It is possible that even when an offspring is created which features no duplication (or where

duplication has been corrected somehow), the ordering will remain invalid due to the struc-

tural constraints of the architecture. For example, ordering 1 presented in Figure 8.6 features

8.3 Ordering Bricks using a Genetic Algorithm 193

a

c
d

e

b 1. a–e–b–c–d
2. a–b–c–d–e

Figure 8.6: An invalid random ordering for the given labelling/architecture. See also Figure
6.5.

a

c

d

b
 abcd

dcba

−→cut

(
a bc d
d cb a

)
−−−−−−→crossover

 acbd

dbca

Figure 8.7: Label-grouped crossover resulting in offspring solutions with invalid orderings

no duplication, but is not a valid ordering. Brick a, being first in the ordering, is designated

as the initial brick. Each brick subsequently placed must then be adjacent to an existing

brick within the structure. Brick e, which is scheduled next in the ordering, can only be

placed when one of the adjacent bricks has been placed previously. In this case, either brick

c or d (or both) qualify, but since the ordering indicates neither of these bricks yet exists

within the architecture, brick e cannot be placed and the ordering is invalid.

We have seen that the simplest crossover mechanism can easily introduce label duplic-

ation into offspring solutions. While the ‘common-subgroup’ method illustrated in Figure

8.5 guarantees no duplication of labels, neither the normal crossover mechanism, nor the

‘common subgroup’ method are guaranteed to produce valid offspring solutions. It is trivial

to construct an example in which this form of crossover results in an invalid order, as can

be seen in Figure 8.7.

8.3.5 Mutation using Direct Encoding

Mutation provides genetic diversity and enables the genetic algorithm to search a broader

space. It can also be considered to ‘nudge’ the fitness of the population of solutions away

from local maxima, and is usually applied according to some low probability (the exact

value normally being determined experimentally). It is mutation which most clearly exposes

8.4 Indirect Representation of Brick Ordering 194

the fundamental problem with a direct encoding scheme for ordering bricks within a Nest

architecture.

Within a direct encoding of orders, mutation can only be achieved through swapping one

or more elements within the ordering. If we consider ordering 2 in Figure 8.6

[abcde]
−−−−→
mutate [ebcda]

However, this order is now invalid, because brick b cannot be placed before either a or

c. To avoid this, elements must be carefully (and expensively) selected for mutation, or

the resulting errors corrected, again incurring further computational expense. While for the

small example structure in Figure 8.6 this is trivial, it is quite possible that a small change

at the start of an order will require the remainder of the order to be modified to become

valid again.

This pinpoints the crucial problem with using a direct encoding scheme for this type

of problem: each choice made during the ordering process dramatically alters the set of

subsequent choices which will result in a valid ordering.

8.3.6 Summary of Direct Encoding

It is clear now that a direct representation of brick ordering is far too brittle to be used within

a GA. Even when means are devised to correct the errors which are almost certain to appear

after cross-over and mutation, a large amount of computational effort must be expended

and the resulting ordering after correction may share nothing with the original (as shown in

Figure 8.4). The relationship between parent solutions and offspring is effectively broken,

significantly compromising the fundamental strength of the genetic algorithm approach.

8.4 Indirect Representation of Brick Ordering

An indirect encoding scheme specifies a solution in some intermediate language, requiring

reinterpretation before it can be considered for evaluation. By distancing the solution rep-

resentation from the specific architecture, the flexibility which was missing in the direct

8.4 Indirect Representation of Brick Ordering 195

Let B be the set of all bricks within the architecture. The sequence of
bricks representing the build order O = ∅. To produce a valid ordering:

1. Select a brick b from B at random, and append it to O. This brick
is the initial brick

2. Until O contains all the bricks in the architecture:

(a) From O, select a brick b, where N is the set of neighbouring
bricks of b and (N ∩O) 6= ∅

(b) Select a neighbour b′ of brick b from (N ∩O) and add it to O

Figure 8.8: The sequence of decisions taken when creating a valid ordering from an archi-
tecture.

encoding scheme described above allows us to alter solutions without completely destroying

their validity.

To produce an indirect encoding, it is necessary to consider the process which is used to

create a valid ordering in the first place. Essentially this process consists of 3 steps, outlined

in Figure 8.8.

This process can be broken down into three distinct choices. The first choice, listed as

step 1 in Figure 8.8, determines which brick is the initial brick – that is, the single brick

which is not placed by a rule, but already present in the lattice. The remaining processes

consists of selecting a brick we have already ordered which has unordered neighbours (step

2.(a)), and then adding one of those neighbours to the ordering (step 2.(b)).

If set B is represented as an ordered array (the ordering based on whatever unique brick

labelling has been selected) and consists of n bricks, the initial choice is simply a random

index within that array2: a random number between 0 and n − 1. To select a brick b from

O (step 2.(a)), we can simply treat O like an array and indicate which element we should

choose by its index ib, 0 ≤ ib < |O|, where |O| is the number of bricks already ordered at any

point. Finally, we must select an unordered neighbour b′ of b (step 2.(b)). If we examine

the neighbourhood of b in a specific order, such as the cell indexing shown in Figure 4.6 in

Chapter 4, we can add neighbours to N in a consistent manner and thus ensure that any

index will always refer to the same brick for one particular neighbourhood. The choice of a

2Array indexes almost universally begin at zero within programming languages. In this instance indexing
from zero is crucial since we will be utilising remainders.

8.4 Indirect Representation of Brick Ordering 196

1. Create a sorted array B containing all bricks in the architecture.

2. Create an empty array O which holds the ordering of brick labels

3. Select the brick at index start from B (B[start]), and add it to a
list O. This brick is the initial brick. Remove B[start] from U .

4. For each pair of indexes (ix, nx):

(a) U is the set of all bricks in O which have unordered neighbours

(b) b = U [ix].

(c) Generate the neighbour array N from the bricks around b.

(d) Remove all brick labels from N which appear already in O

(e) b′ = N [nx].

(f) Insert b′ at the end of O

Figure 8.9: The sequence of decisions taken when creating a valid ordering from an archi-
tecture.

neighbour b′ therefore becomes the selection of an index nb from an array representation of

N , where 0 ≤ nb < |N |.

This sequence of steps can be concretely represented as a list of indexes of the form:

start , (i1, n1), (i2, n2), . . . , (i(x−1), n(x−1))

where n is the total number of bricks in the architecture. Each pair (ix, nx) are indexes used

to select the next brick in the ordering. This sequence of indexes identified a precise set of

brick choices, and can thus be used to reliably encode specific architecture brick orderings.

With such a sequence of array index choices, we can use the algorithm implementation

outlined in Figure 8.9 to produce O, the final global ordering sequence of each brick within

the architecture. This ordering can then be used to extract rules using the rule extraction

process outlined in Section 6.2.1.

8.4.1 Crossover using Indirect Encoding

In order to justify the extra processing required to convert this indirect encoding into an

architecture ordering, the problems exhibited by a direct encoding during crossover must be

8.4 Indirect Representation of Brick Ordering 197

somehow avoided. By modifying the algorithm in Figure 8.8 a means of achieving this goal

becomes readily available.

For an architecture of n bricks, each element within the gene string of this form of

indirectly encoded solution is a number. However, as was seen with crossover using direct

encodings, modifications to the representation can easily render a solution invalid. For each

element within that string, the conditions below must be satisfied for it to be interpretable

as a brick ordering:

start In the case of the first element, any number between 0 and n−1 is valid. If the number

is greater than n− 1, it will be out of bounds of the array representation of B.

Solution – Determine the actual value of start by taking the remainder of start
n

, i.e.

start mod n.

ix For brick index ix to be valid, 0 ≤ ix < |O|, since the index must be an element in the set

of previously-ordered bricks. If the value is greater than |O|, it is out of the bounds of

the array O, leading to an error.

Solution Determine the actual index within U by taking the remainder of ix
|U | , i.e.

ix mod |U |, where |U | is the size of array U at the point during the ordering

process when we encounter ix.

nx The size of N at any point depends entirely on which brick is selected by U [ix]. If

nx > |N | then the next brick in the ordering cannot be determined, again producing

an error.

Solution The index of the next brick to be added to O is then determined by nx mod

|N |.

In this manner any string of numbers of length 2n + 1 can be processed into a valid

ordering of an architecture of n bricks. Furthermore, this string can be modified in any way

through cutting and replacing whilst remaining valid as above, requiring none of the error

correction necessary when using a direct encoding.

8.5 Genetic Algorithm Implementation 198

8.4.2 Mutation using Indirect Encoding

Mutation is now simple to achieve as any element within the encoded genome can be modified

in any way without compromising the validity of the solution it represents. The simplest

form of mutation is selecting one digit at random from the string, and incrementing or

decrementing its value.

8.4.3 Indirect Encoding Example

Below a concrete example of indirect ordering is presented. In Figure 8.10, two indirectly

encoded orderings are presented. The first can be converted into an ordering without signi-

ficant consideration. The second is a random string of numbers, which can also be converted

deterministically into a valid brick ordering for the architecture. By using a random string

of numbers, it is clear that any gene string, regardless of modifications produced through

crossover or mutation, can be used to generate a valid brick ordering.

8.5 Genetic Algorithm Implementation

The indirect encoding scheme above has been implemented as part of the Nest-3.0 system,

and a number of simulations run to evaluate the effectiveness of using a genetic algorithm

to order bricks. Six random architectures were generated, containing 10, 20, 30, 40, 50 and

100 bricks each. These architectures were then used as the subject of a genetic algorithm

simulation as follows:

1. A random initial population of 50 valid ordering solutions is generated.

2. Each of these orderings is then applied to the architecture:

• The architecture is then evaluated using the Increasing States algorithm to

determine the minimum number of brick colours required to guarantee accurate

construction with the rule set derived from that ordering.

• The number of brick colours returned is assigned as the fitness of that particular

ordering.

8.5 Genetic Algorithm Implementation 199

a

c
d

e

b
1. 2,0,0,1,0,0,0,1,0
2. 6,1,5,7,3,2,5,4,7

B = [a, b, c, d, e]

1. 2,0,0,1,0,0,0,1,0 ⇒ c-a-b-d-e

O = [B[start]] = [B[2]] = [c]
U = [c]

Step (ix, nx) U[ix] N N[nx] O U
1 (0, 0) U[0] = c [a,d,b,e] N[0] = a [c,a] [c,a]
2 (1, 0) U[1] = a [b] N[0] = b [c,a,b] [c]
3 (0, 0) U[0] = c [d,e] N[0] = d [c,a,b,d] [c,d]
4 (1, 0) U[1] = d [e] N[0] = a [c,a,b,d,e] [∅]

2. 6,1,5,7,3,2,5,4,7 ⇒ b-c-a-e-d

start = (6 mod |B|) = (6 mod 5) = 1
O = [B[start]] = [B[1]] = [b]
U = [b]

Step (ix, nx) U[ix mod |U |] N N[nx mod |N |] O U
1 (1, 5) U[(1 mod 1 = 0)] = b [a,c] N[(5 mod 2 = 1)] = c [b,c] [b,c]
2 (7, 3) U[(7 mod 2 = 1)] = c [a] N[(3 mod 1 = 0)] = a [b,c,a] [c]
3 (2, 5) U[(2 mod 1 = 0)] = c [d,e] N[(5 mod 2 = 1)] = e [b,c,a,e] [c,e]
4 (4, 7) U[(4 mod 2 = 0)] = c [d] N[(7 mod 1 = 0)] = d [b,c,a,e,d] [∅]

Figure 8.10: Examples of indirect encoding processed into a brick orderings. Each step
shows the ordering of another brick, based on the interpretation of previous
parts of the genome. In this example the order of precedence when generating
N is N,NE,SE,S,SW,NW.

8.6 Experimental Results 200

3. The population of ordering solutions is then sorted into ascending fitness order, and

statistics recorded regarding the fitness of the population.

4. The best solution in the generation is passed through without modification by crossover

or mutation. This procedure is known as elitism, and ensures that the best solution is

never lost.

5. Until the new population contains the same number of solutions as the existing popu-

lation

• Two solutions are selected from the old population. The probability of any par-

ticular solution being selected is proportional to its fitness.

• The crossover operator (see Section 8.4.1) may be applied to these solutions to

generate two new child solutions, which are placed into the next generation in-

stead. The probability of this operation occurring is set at 0.9.

• As each solution passes into the next generation, it may be mutated (see Section

8.4.2) to produce a new solution. The probability of any solution being mutated

is set at 0.04.

6. The process continues at Step 2, unless:

(a) A maximum number of iterations has been reached, or

(b) The fitness of the best solution has not changed within a given number of iterations

8.6 Experimental Results

The results of these experiments are shown in Figure 8.11. On each chart, the y-axis delin-

eates the fitness of the population, whist the progress through time from one generation to

the next is represented along the x-axis. Each chart also displays three lines, representing

the best, worst and average fitness within the population at each generation. Results are

taken from an average of 10 simulations for each particular size of architecture (with the

8.6 Experimental Results 201

exception of the 100-brick simulation whose results are an average of 5 runs due to the time

taken for each simulation).

The best solutions for the 20- and 30-brick architectures from a randomly-selected run

are shown in Figure 8.12 for illustration.

8.6.1 Fitness Trends

Several trends become apparent through examination of the charts in Figure 8.11. By

considering the average fitness through time, we can confirm that the genetic algorithm

succeeds in increasing the fitness of the population. This important result confirms that

our chosen representation and genetic operators allow for effective evolution towards better

results. This trend is echoed by the worst fitness score in each generation, which typically

decreases, although following a far less smooth curve than the average.

The high variability of the worst solution over time suggests that while our operators

do allow for successful evolution, a high degree of variability in fitness can be caused by

crossover, mutation, or both these processes. This is most likely an artefact of the smooth-

ness (or lack of smoothness) of the mapping between gene strings and the brick orderings

produced. Since each element within the gene string affects the contents of O and U , a

single difference between gene strings can result in different contents of U at later stages,

causing the remaining gene instructions to be interpreted differently. In this manner, a single

mutation can result in a significantly different brick ordering, and thus the mapping between

the gene string representation and the resulting orderings is not entirely smooth.

The fitness of the best solution, as was intended and can clearly be seen, never decreases.

It is interesting to note that in those simulations with smaller architectures (10- and 20-

brick structures in particular) the best fitness is present within the initial population, and

is not bettered during the course of the experimental run. However, in simulations using

50- and finally 100-brick structures, the final best fitness is improved over the best solution

in the initial population. In these larger-architecture simulations, the genetic algorithm’s

effectiveness can be more clearly seen.

8.6 Experimental Results 202

0 2 4 6 8 10 12 14
Generation

3

3.5

4

4.5

5

5.5

6

6.5

States

Ordering of a 10 Brick Architecture Using Genetic Algorithm

0 5 10 15 20
Generation

4

5

6

7

8

9

10

States

Ordering of a 20 Brick Architecture Using Genetic Algorithm

0 5 10 15 20
Generation

5

6

7

8

9

10

States

Ordering of a 30 Brick Architecture Using Genetic Algorithm

0 5 10 15 20 25 30
Generation

5

6

7

8

9

10

11

States

Ordering of a 40 Brick Architecture Using Genetic Algorithm

0 5 10 15 20 25 30
Generation

6

7

8

9

10

11

12

States

Ordering of a 50 Brick Architecture Using Genetic Algorithm

0 5 10 15 20 25 30
Generation

10

12

14

16

18

States

Ordering of a 100 Brick Architecture Using Genetic Algorithm

0 2 4 6 8 101214
Generation

3
4
5
6
7

States

Ordering of a 10 Brick Architecture Using Genetic Algorithm

Worst Solution Fitness

Average Solution Fitness

Best Solution Fitness

Figure 8.11: Experimental results using a genetic algorithm to evolve brick orderings.

8.6 Experimental Results 203

Figure 8.12: Examples of 20- and 30-brick randomly generated architectures, after ordering
using the genetic algorithm and brick colour assignment by the Increasing
States algorithm.

8.6.2 Experimental Parameter Selection

The crossover probability was set at 0.9 to encourage a thorough mixing of solution material,

whilst letting some adequate or even high-fitness solutions enter the next generation unmod-

ified. Finally, mutation occurs with a relatively low probability, as is traditional in most

GA experiments, since mutation may have a significant detrimental effect on the fitness of

a solution.

These parameter values were selected after a brief series of test runs in order to ascertain

the viability of this approach as a whole. The precise values do not significantly impact

the performance of the genetic algorithm when operating on architectures of this small size,

although it was clear that higher values of mutation adversely affected the worst solution

fitness. Larger architectures, on the other hand, may benefit from hand-tuning of these

parameters in order to improve the genetic algorithm’s performance and convergence of

fitness. However, since the optimisation of this process is not relevant to this investigation

(only that such an approach is viable), such experimentation is left as future work.

8.7 Evaluation of Ordering Using Genetic Algorithms 204

8.7 Evaluation of Ordering Using Genetic Algorithms

It can now be seen that it is quite feasible to use genetic algorithm techniques to produce

brick orderings which work towards optimising the number of brick colours required to build

an architecture, when used in conjunction with the Increasing States algorithm described

in the previous chapter. The selection of an appropriate representation for manipulation

by the genetic algorithm process has been shown to be crucially important, as is true in

related sequencing problems such as the Travelling Salesman Problem, and in Job-Shop

Scheduling. By selecting an indirect method of encoding the brick order, expensive genetic

repair operators have been avoided.

The results of this approach as a mechanism towards stigmergic algorithm extraction

have also been presented, and can clearly be seen to be effective. However, the results also

highlight several problems. The crossover and mutation operators can still have significantly

destructive results on the fitness of the solutions on which they operate. More inspiration

can certainly be drawn from the extensive work in the area of Job-Shop Scheduling[91] to

deal with this.

8.8 Algorithm Extraction – Summary Review

The two steps required to extract a stigmergic algorithm were outlined as below in Sections

6.5:

1. Assign a valid order to the bricks within the architecture

2. Assign a colour to each brick within the architecture

We have now presented solutions to both of these component problems, and thus have to a

significant extent reached the goal of both the original work by Bonabeau, Theraulaz et al.,

and the continuation of those aims outlined in Chapter 5 and Chapter 6 here. Given any

structure (within the constraints of the original lattice system) it is possible to:

• Extract a stigmergic algorithm;

• Determine the minimal number of brick colours required by that algorithm;

8.9 Limitations of Increasing States and Ordering 205

• Guarantee that the desired structure will be reproduced perfectly.

However, as will be seen in the remainder of this work, optimisation of this particu-

lar genetic algorithm process is not the biggest obstacle in achieving the original goal of

this research: to produce minimal stigmergic algorithms capable of constructing arbitrary

structures.

8.9 Limitations of Increasing States and Ordering

Only one aspect of this solution seems to be lacking: the number of rules in an extracted

algorithm remains equal to the number of bricks in the original architecture (see Section

6.5.1). To further illustrate, by considering the 6-brick ring structure in Figure 6.13, the

extraction process we have developed will at best produce an algorithm equivalent to a1 in

that figure. However, algorithm a2 in that same figure depicts an algorithm which uses only

5 rules to build the same structure – the number of rules |R| is less than the number of

bricks built |B|, and the resulting algorithm is therefore smaller, simpler, and more efficient

at describing the construction of the output structure.

As |R| increases for more complex structures, the simplicity of an extracted stigmer-

gic solution is compromised. An agent which must recognise thousands of different local

configurations of building material has arguably ceased to be simple, and there may be a

threshold where the other benefits of a distributed solution (as described in Section 1.2.2) no

longer outweigh the complexity of the control system within each individual agent required

to distinguish between a larger number of local configurations.

In other words, it is clear that a significant portion of the perceived power underlying

stigmergic solutions is derived from the production of seemingly complex structures from

obviously simple rule sets, and thus producing stigmergic algorithms with a number of rules

less than the number of bricks in the resulting architecture is a highly desirable goal.

One means to produce algorithms where |R| < |B| will now be considered: the identific-

ation of smaller, repeated sub-structures within an architecture, and the exploitation of this

repetition to reduce the total number of rules required to build the structure. The introduc-

8.9 Limitations of Increasing States and Ordering 206

tion of repetition creates new problems and conflicts within the algorithm regarding control

of building behaviour. The production of algorithms in which |R| < |B|, and implications

of allowing the repeated firing of rules during simulation, are the subjects of the following

chapter.

Chapter 9

Pattern-based Ordering

”Therefore, if one wants a swarm of agents to build a given architecture, one

has to decompose it into a finite number of building steps, with the necessary

condition that the local configurations that are created by a given state and which

trigger building actions, differ from those created by a previous or a forthcoming

building step so as to avoid the dis-organization of the building activity.”[156]

Overview

The previous chapters have presented an effective and tractable method of extracting a

stigmergic algorithm from an existing architecture. However, in every algorithm produced

by this process the number of rules in the resulting algorithm is exactly equal to the number

of bricks in the original structure.

In this chapter, the use of repeated substructures or modules is considered as a means

to reduce the number of rules in the extracted stigmergic algorithm. The consequences of

construction using repeated modules are considered in detail, and finally the feasibility of

the process is evaluated.

9.1 Patterns and Substructures 208

1 2

4 5

3
extraction simulation

Figure 9.1: A stigmergic algorithm in which |R| < |B|, taken from Figure 6.13. Rule 4
in this algorithm fires twice, at separate locations, to produce the two, short
vertical columns highlighted in the final construction on the right.

9.1 Patterns and Substructures

The simplest consequence of attempting to produce an algorithm where the number of rules

in the algorithm, |R|, is less than the number of bricks in the input structure, |B|, is that in

order to build more bricks than you have rules, one or more rules must fire more than once.

This is a crucial point which deserves to be repeated: if in any way it is possible to

produce an algorithm with |R| < |B|, it is necessary that one or more rules within the

algorithm will fire at least twice during the simulation. Considering the basic nature of

the simulation system, a rule will fire when a particular stimulating configuration is present

within the environment. For the same rule to fire more than once, the same stimulating

configuration must therefore be created within the environment more than once.

9.1.1 A Simple, Minimal Example

In Figure 9.1, we can see a simple algorithm which produces a six-brick ring structure, using

only five rules. The highlighted rule fires twice during the course of simulation, producing the

two green bricks which the final rule eventually matches against. The extraction processes

described previously would always produce stigmergic algorithms with six rules, given that

|R| = |B| in that process. While the reduction from six to five rules might not seem

significant, this new five-rule algorithm is now minimal1, and cannot be optimised further.

The production of minimal algorithms is clearly the most valuable potential outcome of this

research, so any method which might reduce algorithm size should be considered.

1See section 9.8.1.

9.1 Patterns and Substructures 209

The key to the production of this minimal algorithm lies in the identification of patterns

or substructures which are present more than once within the architecture. Within the ring

structure in Figure 9.1, the repeated substructure of a short column of two bricks has been

highlighted. Since this small structure appears identically twice in the overall construction,

it can be built using the same set of rules (or single rule – rule 4 – in this simple case).

9.1.2 Repeating Rules

The repeated execution of stigmergic rules has been considered previously in this thesis (see

Section 5.5.4), and in particular the ‘problem’ of self-activating rules. These rules, given

the correct local environment, can fire more than once in direct succession. This type of

repetition contrasts with that demonstrated in the simple example above, where a single

rule fires in two distinct neighbourhoods, and fires only once at each point.

This is illustrated in Figure 9.2, using the two rules from figures 5.6 and 5.7 in Chapter

5. The situation presented on the left is an example of independent repetition, similar to

that given in Figure 9.1. Rule A will fire only in positions X1 and X2. These two positions

must be in distinct neighbourhoods; i.e. X1 must be a cell which is not included in the

neighbourhood of X2. If this is not the case, the neighbourhood for X2 will be modified by

the new brick in X1, and thus the rule will not match in this modified neighbourhood.

Rule B is the archetypal self-activating rule, which in this form builds a straight line of

cells. In contrast with independent repetition, each subsequent cell in which the rule fires is

a part of the neighbourhood of the previous. To clarify, the distinction between independent

and self-activating repetition is a consequence of the positions in which the rule can fire (if

it can fire at all) immediately after it has itself fired. If the rule can place a brick somewhere

within the neighbourhood of the brick it originally placed, the rule is self-activating, since it

is therefore a post-rule of itself.

If a rule is repeated, either the subsequent firing occurs directly after the previous one,

and within the same neighbourhood, and is therefore a self-activating repetition, otherwise

it is then an example of independent repetition.

Just as the repetition of rules can be divided into two clear categories, we can consider

9.1 Patterns and Substructures 210

Rule AExisting Environment

X X

Rule B

1 2

Figure 9.2: Two types of repetition in simple rule systems. Rule A will fire once at site
X1, and then once again at site X2. Rule B is self-activating, and will fire
repeatedly until stopped.

self-activating modules leaf modules
...

module

module

module

module

...

module

module

module

...

Figure 9.3: Two types of architecture module repetition: self-activation and stem-and-leaf.

the construction of larger repeated units – modules – in a similar manner.

9.1.3 Modularity and Types of Repetition

The stimulating configuration which triggers the repeated production of a substructure or

module in an architecture may be produced either as a direct result of the construction

of the repeated unit, or by construction external to this module. This is illustrated in

Figure 9.3. These two types of repetition may be termed self-activating and stem-and-leaf

repetition.

Self-Activating Repetition

As can be seen in Figure 9.3, self-activating modules are built in a chain, with one modular

substructure built directly onto the previous one. An important consequence of this form of

repetition is that in the absence of any external structures (see Section 9.7) the construction

9.1 Patterns and Substructures 211

SR SR SR SR
SR

S1 S2 S3 S4

SR SR SR SR

Self-Activating
Modules

Stem-and-Leaf
Modules

Figure 9.4: Self-activating and stem-and-leaf modular construction shown as building
states. SR indicates the particular module/state which is repeated.

of such chains of modules cannot be controlled: the sequence of modules will be built forever.

Repetition of this type allows ‘coherent’ structures of infinite size (without the bounds

of the simulated space) to be produced from a stigmergic algorithm of fixed size. The

construction cannot be halted unless external structures are present in the environment or

a more sophisticated agent behavioural system is used. Controlling this type of repetition is

discussed further in Section 9.2.1.

Stem-and-Leaf Repetition

In contrast to self-activating modules, leaf modules do not fire continuously. Instead, the

stimulating configurations which trigger the construction of a leaf module are generated by

a separate set of stigmergic rules. This is illustrated on the right in Figure 9.3.

9.1.4 From Repeated Modules to Building Stages

These two types of modular construction are distinguished by the generation (or lack of

generation, in the case of leaf modules) of stimulating configurations which will initiate the

repeated construction of another identical module. This exhibits itself during the simulation

as a series of cycles within the construction graph (Section 3.4.1). If the types of modular

repetition are visualised in a similar style, shown in Figure 9.4, the difference between self-

activating and stem-and-leaf repetition is clearly presented.

Just as two types of modular construction have now been identified, two distinct behavi-

oural patterns of coordinated algorithms were asserted in [158, 156] (and discussed in Section

5.1):

9.1 Patterns and Substructures 212

“Such [building] states are at the root of the modular structures that appear

in the architecture. One may have the two following cases (where Ri denotes the

set of responses generated in state Si):

a strictly linear chain of building states:

S1
R1↓−−→ S2

R2↓−−→ S3
R3↓−−→ S4

a chain of building states that can have recurrent states:

S1

R1↓−−→S2

R2↓−−→S3

R3↓−−→←−−−−−−−−−−−−
R4↑

S4.”

These state transition diagrams do not correspond directly to the two types of modularity

depicted in Figure 9.4. This may account for the issues in clarity raised in Section 5.1

regarding these building behaviour descriptions. In this section, the concept of a ‘building

state’ was discussed in detail, and the definitions given in [158, 156] found to be too vague

to be useful for the ‘bottom-up’ stigmergic algorithm generation process adopted originally

by Theraulaz and Bonabeau.

However, the aspect of modularity indicated by Theraulaz and Bonabeau’s ‘building

states’ now appears be central in the ‘top-down’ extraction of compact (|R| < |B|) stigmergic

algorithms.

9.1.5 Architecture Construction using Repetition

The repetition of larger structures can be divided into two distinct types, as shown in Section

9.1.2; however, it should not be inferred that the construction of a whole architecture must

be achieved by only one of these types. Both types can exist together comfortably, as shown

in Figure 9.5. In this example, the red central spine is built using a single, self-activating

rule, while the blue and yellow modules are repeated along the spine as leaf modules.

Clearly, self-activating repetition can be extremely useful, and may co-exist as a com-

plementary mechanism with stem-and-leaf repetition (and certainly with other rules which

may not repeat at all) for efficiently generating a structure. However, as is now obvious

9.2 Accuracy and Control in Architecture Construction 213

Central Spine

Repeated Modules

Repeated Modules

Figure 9.5: A simple architecture demonstrating both self-activating and independent or
stem-and-leaf repetition using during construction.

the central spine of the structure shown in Figure 9.5 will grow to be infinite in length in

the absence of external factors such as existing structures within the environment, or user

intervention.

To effectively exploit repetition in an algorithm which must accurately construct an

architecture, some means for controlling the behaviour of such rules must be found. The

issue of accurate construction with regards to minimising algorithm size therefore becomes

an important factor to consider in this research.

9.2 Accuracy and Control in Architecture Construc-

tion

Numerous example systems have been previously presented in which construction continues

until stopped by the user. The most notable of these are the single-rule systems discussed

in Section 5.3.1, which are examples of what is now termed self-activating repetition. If

stigmergic construction techniques are to be successfully applied in arbitrary, non-biological

situations, it is almost certain that the production of structures of exact sizes will be required,

and therefore if the repetition of architectural modules is to be employed in order to produce

more compact stigmergic algorithms, some mechanisms must be devised to control this

repetition, particularly modules and rules which are self-activating.

9.2 Accuracy and Control in Architecture Construction 214

9.2.1 Limiting Stigmergic Construction in Nest

As noted in [29, 52, 151], a significant problem with qualitative models of stigmergy such

as that being examined here is that they fail to provide mechanisms which define how

construction ceases. Two methods of inhibiting construction are suggested in [29]:

• Additional meta-rules which stop construction, governed by external factors such as

swarm population size or various other functional parameters.

• The sequence of construction steps results in a final architecture with a complete ab-

sence of stimulating configurations matching any rules within the stigmergic algorithm.

An additional mechanism which is fairly obvious involves the use of quantitative envir-

onmental cues, such as pheromones:

• Rules are only matched if there is some sufficient strength of an environmental factor

which exhibits a decreasing-strength gradient as the distance from the source increases.

While the addition of a pheromone-like2 element is simple to implement, it is beyond

the scope of the simple model used here, which must remain purely qualitative if prediction

of rule firing (via post-rules, for instance) is required. The meta-rule method is far beyond

the scope of the simple model considered here: the functional simulation of a structure

requires a vastly more complex behavioural model for the agents, and almost certainly the

gross abstraction of structure employed here would not sufficiently support such detailed

simulation. Instead, a pure qualitatively-stigmergic solution must be derived if the current

model is to be successfully exploited.

9.2.2 Precisely-Sized Structures

The dimensions of a structure can be defined in two ways – using absolute terms, or relative

to existing external structures. Considering the latter, such a structure might be defined

2While pheromones represent the most obvious form of quantitative stigmergy, many other forms can
exist. Behaviour may be regulated by light intensity (greater activity in regions where there is little material
between the agents and the outside world), temperature gradients, or concentration of carbon dioxide[40,
121]. This is discussed further Section 10.2.1.

9.2 Accuracy and Control in Architecture Construction 215

X

A

B

X

X

repeat

stop

5
br

ic
ks

5 colours

a) b)

Figure 9.6: Two methods of limiting the size of constructed architectures: external struc-
tures and discrete brick colouring.

as “build a column of bricks from existing point A to existing point B”, or some similar

expression which ties construction to objects already present in the environment. This is

demonstrated by part a) in Figure 9.6, where a ‘bridge’ must be built between two existing

structures. Only two rules are required in this particular instance – one which builds the

bridge itself, and a final rule to build the brick joining the bridge to ‘structure B’.

Independent Structural Measurement

However, in the simple system we are considering, the environment is initially empty, and

so all constraints must be defined without reference to external structures: in isolation. A

trivial example is the construction of a simple column of exactly 5 bricks (as illustrated in

part b) of Figure 9.6). To successfully achieve this goal, the agents must have some method

of measuring the construction so as to ensure they neither fail to complete the architecture,

nor build more than 5 bricks.

Brick Colours for Measurement

An agent’s perception is limited to the size of a single neighbourhood, which in this particular

system only includes the bricks immediately adjacent to the agent’s current position. Since

an agent cannot detect the presence of bricks beyond this boundary, and lacks any internal

state to compensate, it is unable to measure architectural features of a size greater than

or equal to the size of a neighbourhood in any direction. This is illustrated in Figure 9.7,

wherein the agent cannot know if the row of bricks it is moving along consists of exactly, or

9.2 Accuracy and Control in Architecture Construction 216

? ?

Neighbourhood &
Perceptual
Boundary

Figure 9.7: The size of an agent’s perceptual area is limited to a single neighbourhood as
defined by the abstract stigmergic system. The agent therefore cannot determ-
ine the size of structural elements equal or greater than the neighbourhood
size.

more than, three bricks.

Since the agent has no means to internally ‘count’ the number of bricks in the structure,

this information must be stored in the state of the environment itself; the agent needs some

method of indicating that the current brick is the nth brick in the sequence. As indicated

in part b) of Figure 9.6, the means available for the agent to store this information in the

environment is using different brick colours. In this example, the ‘blue’ brick is the 2nd

brick, the ‘green brick the 3rd and so on. Since no rule matches against a ‘purple’ brick,

construction halts and the required 5-brick architecture has been precisely replicated.

9.2.3 Minimal Brick Colours and Accurate Replication

A simple conclusion to take from part b) of Figure 9.6 would be as follows: In order to build

an architectural feature of length n, without the existence of external structures, n brick

colours are required.

However, by initiating the construction of structures at a central point and building

outwards, rather than starting at an extremity. By doing this, the maximum length agents

must measure is half the total length of the structure. For example, the minimum number

of brick colours required to build a column of n is reduced from n to n/2 (rounded up to

the nearest integer). This is illustrated in Figure 9.8. We can therefore revise our assertion

to become: In order to build an architectural feature of length n, without the

existence of external structures, at least n/2 brick colours are required.

This assertion is further supported by the minimum number of brick colours found by

9.3 Accurate Construction with Repeating Modules 217

5
br

ic
ks

0

1 2

43

Figure 9.8: Exploiting the exclusion of rotation to reduce the number of brick colours
required to build a column.

the genetic algorithm (GA) in Section 8.6. The 50-brick structure whose order was evolved

previously is shown in Figure 9.9. The maximum span of this structure is 9 bricks, and so

n = 9. The minimum number of brick colours found by the GA was 6, which lies between

n and n/2. It should not be expected that the GA would find an algorithm where the

minimum number of brick colours is actually n/2, since the other features of the structure

might require additional colours to be introduced.

9.3 Accurate Construction with Repeating Modules

In the previous section, use of brick colours to allow agents to “measure” architectural

features was introduced. For instance, to build a column or line of bricks of an absolute

length n then n/2 brick colours are required. This same technique can be applied to the

construction of repeated units, as shown in Figure 9.10. In this architecture, a leaf module

is required every three bricks along a column structure. This is achieved by ensuring that

the particular stimulating configuration which initiates the leaf module (Rule D) appears at

this regularly repeating interval.

The repetition of this configuration is created by splitting the column structure into

repeating units of three bricks each, with the deposit of the final green brick triggering (Rule

C) the construction of another three-brick column segment. In this manner, the differing

brick colours along the column are used to measure the correct interval for the placement of

leaf modules, as the construction progresses.

9.3 Accurate Construction with Repeating Modules 218

5 bricks deep

8 bricks long

Figure 9.9: Dimensions of the structure for which an ordering was evolved in Section 8.6
(see also Figure 8.11).

XX

Repeated Modules

Rule C Rule D

3 bricks

3 colours

Figure 9.10: A simple structure featuring the controlled repetition of modules.

9.3 Accurate Construction with Repeating Modules 219

X Rule D

8 Bricks
5 States

X Rule D

X Rule D

1

2

3

Figure 9.11: Controlled, limited repetition of leaf modules.

9.3.1 Local vs. Global Measurement

The example above demonstrates the use of repeated modules to accurately build features

at given intervals during the construction of an architecture, and the use of brick colour as

an additional tool to effectively ‘measure’ the relative distance between these modules.

However, further consideration of the algorithm outlined above will show that while the

repeating column unit controls the placement of the leaf modules initiated by Rule D, the

column module itself is a self-activating module. In the absence of external factors an infinite

series of leaf modules will be built, each spaced 3 bricks apart on an infinite-length column

of bricks. While the brick colouring on the column introduces some local measurement and

control, there remains no means to limit the number of repetitions of this unit, and therefore

no mechanism to limit the construction of the overall architecture in this case.

The only way to guarantee an arbitrarily-sized structure in the presence of self-activating

rules or modules is by ensuring the presence of some external absolute-sized structure to

halt the cycle of self-activated construction. The limited-construction form of the stigmergic

system presented in Figure 9.10 is shown in Figure 9.11. In order to halt the construction

of leaf modules, the central spine is built with a limited length, using the minimum number

of brick colours possible (see Section 9.2.3).

9.4 Pattern-based Rule Extraction from Existing Structures 220

9.3.2 Accurate Construction With Repeated Modules – Summary

We have now seen that allowing the repeated firing of rules during construction using a

stigmergic algorithm allows for a reduction in the algorithm size, but the potential for loss

of control during construction is also significant. The presence of self-activating rules and

modules must be countered by the existence (or construction) of precisely-sized structures

to inhibit the further replication of this structural features. In light of the need for some

globally-measured structure of absolute size, the assertion made in Section 9.2.3 still appears

to hold true: in order to build an architectural feature of length n, without external

intervention, at least n/2 brick colours are required.

9.4 Pattern-based Rule Extraction from Existing Struc-

tures

Thus far the separation of architectures into sub-units or modules has been considered from

the perspective of reconstruction. It was shown that it is possible to build an architecture

using an algorithm with fewer rules than bricks, if the repeated firing of rules is appropriately

managed.

What remains to be investigated is the feasibility of the automatic determination of these

structural modules from an existing structure, and the integration of any such process into

the existing algorithm extraction technique presented in previous sections. The original

process is split into two stages, as below:

1. Extract rules from the structure by ordering bricks.

2. Assign colours to each rule using the Increasing States Algorithm (see Chapter 7).

The state assignment process operates only on a set of rules, without concern as to

how those rules were obtained, so consideration of how it might accommodate controlled

repetition can be postponed for the moment. The number of rules within an algorithm is

determined wholly by the rule extraction process, which up to this point has consisted of a

simple ordering of the structure’s bricks. This must now be augmented as follows:

9.4 Pattern-based Rule Extraction from Existing Structures 221

Y
Z

Y
Z'

X

X

A B C

Figure 9.12: A simple architecture, and possible divisions into patterns.

1. Extract rules from the structure by ordering bricks:

(a) Identify and divide the architecture into sub-architectures, some of

which may be repeated.

(b) For any modules which are repeated, retain only one instance.

(c) Order the bricks within each module, and then extract rules for the

final algorithm from all modules.

2. Assign colours to each rule using the Increasing States Algorithm.

A simple example of how such a process could work is presented below, after which the

construction of an algorithmic process which might automate the process is considered.

9.4.1 A Simple Example of Pattern-based Rule Extraction

In order to illustrate how pattern-based rule extraction might operate, a simple example is

now presented, using the simple structure in Figure 9.12. The first step in the rule extraction

procedure outlined above is the identification of potential modules.

Module Selection

Three likely deconstructions are presented to the right of the simple structure. The first and

most obvious, deconstruction A, splits the architecture into a single module, with a repetition

directly below. However, such a module would be self-activating, and construction would

repeat forever. This is clearly undesirable, and so another decomposition must be found.

9.4 Pattern-based Rule Extraction from Existing Structures 222

Set B splits the architecture into a simple column with a repeated ‘L’ leaf node. It

has previously been shown that the construction of an absolute-length column is simple if

enough brick colours are used, and by doing so this second deconstruction can avoid the

infinite-building problems of self-activating modules.

The rule which builds both bricks marked X in set B (shown below the modules) must fire

twice along the column, matching against brick Y. This means that the same configuration

of bricks and brick colours must be produced at each of these points. As indicated in the

figure, the first brick Y is proceeded by brick Z, and the second Y by brick Z′.

For the same stimulating configuration, including brick Y and any neighbouring bricks

which are already present, to be produced at two points along an effectively one-dimensional

column, the column itself must be built using rules which will repeatedly produce bricks

matching Y along its length. In other words, the column must be built using a self-activating

module, and therefore brick Y will appear many times along the resulting column’s length,

and the same number of leaf modules will be built. Using this set of modules will not result

in accurate construction of the original architecture.

The final decomposition (C) requires the construction of a column with ‘spurs’ along

its length at each point where leaf module should be built. These spurs can be built at

specific points along the column by using distinct rules for each spur, which only match

against a single location along the column’s length. However, these spur rules will deposit

an identical-coloured brick as the spur itself. The leaf module can be assembled by rules

which match against any such brick.

Rule Extraction

Having selected a set of modules, a set of rules must be extracted which can then be processed

by the Increasing States algorithm. This process is shown in Figure 9.13. Firstly, since each

instance of a module will be built using the same rules, we can retain only one instance of

each unique module. In this example, only two distinct modules are present – the column

with stubs, and the leaf, which is repeated twice. The second instance of the leaf module is

therefore discarded.

9.4 Pattern-based Rule Extraction from Existing Structures 223

X
ordering

4
2
1
3
5
6

7

8

1
2

⅞ '
'

Figure 9.13: Ordering and state assignment of the selected modular deconstruction of the
simple architecture presented in Figure 9.13.

a 1
2
'
'

module
neighbourhood

Figure 9.14: Module neighbourhoods must be considered when assigning brick colours.

At this point, each of the bricks in the modules under consideration will be built by a

distinct rule. It is then simple to order the bricks in each module as described in previous

chapters (either randomly or using a genetic algorithm), resulting in the orderings shown in

the centre of Figure 9.13.

State Assignment, Repetition and Brick Colour Constraints

The procedure now becomes more complicated than previous post-ordering rule extraction.

While the leaf module outlined in Figure 9.12 only contained two bricks, the first brick in

any module is never built in isolation3, so any surrounding bricks from other modules must

be included as part of the rule extraction process. This is shown in Figure 9.14. Each

brick which is within the combined neighbourhoods of all bricks within the module must be

considered when the rules for that module are extracted.

Furthermore, since this module must match in more than one region of the architecture,

the module’s neighbourhood must correspond to more than one neighbourhood of bricks in

the overall architecture. Brick a in Figure 9.14 must correspond to both brick 7 and brick 8

in the architecture shown in Figure 9.13. This is shown as the inclusion of brick 7/8 in the

3Bricks are never placed in isolation, with the exception of the very first brick to be placed.

9.4 Pattern-based Rule Extraction from Existing Structures 224

4
2
1
3
5
6

7

8

1
2

⅞ rule
extraction 2

1

1
3

4
2

3
5

5
6

4
2
1

7

3
5
6

8

1⅞
1
2

⅞
'

'
'

'
'

state
assignment 2

1

1
3

4
2

3
5

5
6

4
2
1

7

3
5
6

8

1⅞
1
2

⅞
'

'
'

Figure 9.15: State assignment of extract rules, highlighting linked bricks.

leaf module, indicating that the rule extracted for brick 1′ in the leaf module must match

against both brick 7 and 8 during construction.

The consequence of brick a’s correspondence to both bricks 7 and 8 is that these two

bricks must share the same colour if rule 1′ is to match against both of them. If these bricks

are different colours, the neighbourhoods where rule 1′ should fire cannot be identical, and

so two rules would be required to build brick 1′ in each location. This clearly undermines

the effort to reduce the total number of rules in the resulting stigmergic algorithm.

The complete process is shown in Figure 9.15. The first transition shows the individual

rules as defined by the ordering presented in Figure 9.13. To ensure that bricks 7 and 8

are the same colour, they are both assigned the colour RED, after which state assignment is

performed using the Increasing States algorithm. The resulting algorithm accurately builds

an architecture of 12 bricks using 9 rules and 5 brick colours.

9.4.2 Automatic Pattern-based Rule Extraction

The section above demonstrated the possibility of producing a stigmergic algorithm based

on the deconstruction of an architecture into modules or sub-architectures, but it is far from

automatic. Several steps are not obviously reducible to an algorithmic process. The first and

most obvious is the division of the architecture into modules by automatic means – can the

architecture be split in a way which minimises the size of the extracted stigmergic algorithm?

Additionally, the manner in which colours are assigned to the bricks connecting one module

to another (the spur bricks, or module neighbours, above for instance) must be clarified and

9.5 Automatic Identification of Structural Patterns 225

clearly explained. Finally, the apparent requirement that self-activating modules must be

avoided will be investigated. Each of these issues is now considered below.

9.5 Automatic Identification of Structural Patterns

The identification of repeating structures seems trivial for the human observer, but it is

a significant problem to reproduce this ability within computer systems. Most research

into automatic pattern detection takes place within the context of computer vision, where

models of of relationships between objects within a scene must be determined by the analysis

of image data.

In contrast, we already have a model of entity relationship in the graph of bricks. Each

brick can be related to another by the statement of the direction in which the neighbouring

brick lies. The statement of this relationship is clearly represented in Figure 4.13, presented

during the discussion of the Nest-3.0 software system. To recap, the data structure chosen to

store hexagonal architectures maintains a graph linking each neighbouring brick. Each edge

is also labelled with the direction in which the neighbouring brick lies. What is therefore

required is some automatic means to search for non-overlapping repeated sub-graphs within

this graph of bricks.

9.5.1 Substructure Discovery

By representing a structure as a graph, it is possible to take advantage of the significant body

of existing research and literature regarding graphs4. A module or substructure within an

architecture corresponds to a sub-graph within the entire graph of brick vertices. In tradi-

tional graph theory terminology, two modules which are structurally identical appear as two

isomorphic sub-graphs. Two graphs are isomorphic if there is a one-to-one correspondence

between their vertices and there is an edge between two vertices of one graph if and only if

there is an edge between the two corresponding vertices in the other graph.

The problem of determining if a sub-graph is isomorphic to any other graph is famous,

4Excellent introductions to graph theory can be found in [79, 47].

9.5 Automatic Identification of Structural Patterns 226

and known to be NP-complete5. What differentiates the problem of isomorphic sub-graph

identification within this particular context is that in the ‘classic’ problems, the edges are

not labelled. Within a Nest structure graph, however, the direction in which one brick is

located in relation to any others is significant. In this manner, each edge within the graph

is labelled with the direction (N, NE, or UP for example) in which one brick is connected to

the other.

The Subdue system developed by Cook and Holder[82, 83, 39, 81] employs a compu-

tationally constrained best-first search to perform substructure discovery on graphs with

labelled edges. An example structure, taken from [83], is shown in Figure 9.16. On the left,

a simple arrangement of shapes is presented with a trivial repeating unit. This structure is

represented on the right by a directed, labelled graph in which the vertices represent each

distinct component (T for triangle, S for square, R for rectangle, etc.), while the labelled

edges between each vertex describe each shape’s relationship. For instance, the edge marked

on between T1 and S1 indicates that triangle 1 is on top of square 1. The most obvious

repeating substructure is the simple ‘house’ shape formed by a triangle on a square. This is

represented within the graph as a sub-graph of the form

(x : T)
on−→ (y : S)

where x, y are the unique identifiers for two vertices within the graph.

The Subdue algorithm itself is outlined in Figure 9.17. The algorithm begins with a

substructure matching only a single vertex within the structure graph. Until the amount

of computation exceeds the given limit, each iteration selects the best substructures and

enlarges each instance of these substructures by one neighbouring edge in all possible direc-

tions. The selection of ‘better’ substructures is performed by evaluating each substructure

using a combination of four heuristics[83]:

Cognitive Savings – “. . . the net reduction in complexity after considering both the reduc-

tion in complexity of the input graph after replacing each instance of the substructure

5A comprehensive bibliography of papers considering this problem can be found at
http://www.ics.uci.edu/˜eppstein/bibs/subiso.bib

9.5 Automatic Identification of Structural Patterns 227

4 instances

1:T

2:S

5:R

3:C

4:T

8:T

6:T

7:S

9:S
10:S

on

on on

on

on

on

x:T y:Son

under

under

on

Figure 9.16: A simple configuration of objects on which Subdue can operate.

Subdue(G,limit,beam)
D = {}
S = vertices(G)
while (computation < limit) and (S 6= {})

order S from best to worst using heuristic evaluation
b = first(S)
D = D ∩ {b}
E = {b extended by one edge in all possible ways}
S = S ∩ E

return D

Figure 9.17: The Subdue substructure discovery algorithm (adapted from [81]).

by a single conceptual entity, and the gain in complexity associated with the conceptual

definition of the new substructure.”

Compactness – “. . . the ratio of the number of edges in the substructure to the number of

nodes in the substructure.”

Connectivity – inversely proportional to “. . . the amount of external connection in the

instances of the substructure.” In other words, “isolated” substructures are preferred

over strongly connected ones.

Coverage – “. . . the fraction of structure in the input graph describe by the substructure.”

A large proportion of the further work regarding the Subdue system focuses on fuzzy

matching of sub-graphs. The goal of recent work by Holder and Cook[39, 81] is to providing

9.5 Automatic Identification of Structural Patterns 228

a compressed representation of the structure, by iteratively replacing identical sub-graphs

with a single representative symbol. Where two sub-graphs are similar but not identical,

the minimum number of transformations which will convert the first to the second can be

stored – a fuzzy match – ultimately compressing the original structure into a hierarchical

description of minimal length[138].

This type of transformation, from architecture to minimal-length description, seems very

close to the ultimate aim of this research, which is to find minimal (or failing that, sufficiently

small) stigmergic algorithms to produce given architectures. However, iterative substructure

matching is not directly useful, because stigmergic algorithms are not hierarchical ; there are

no means within a Nest algorithm to specify a structure as an arrangement of repeating

units, followed by a description of those units themselves. Instead, stigmergic algorithms are

flat, with each rule as likely to fire at any time as any other rule within that algorithm.

Furthermore, there are no mechanisms within the Nest system which can arbitrarily

apply changes to single instances of the same substructure during construction, in order to

leverage any fuzzy pattern matching. If some substructure must be subjected to a number

of transformations, it must be distinguishable from other instances within the architecture.

However, repeated substructures produced by stigmergic algorithms are necessarily identical

since the same rules are used to construct each instance.

Despite this, the core substructure discovery mechanism employed by Subdue remains a

viable means for discovering possible repeated modules which might be used in the decom-

position of an architecture into a modular stigmergic algorithm. More information regarding

the Subdue system, along with executable and vastly extended versions of the algorithm,

are available online at the University of Texas, Arlington,6 at the time of writing.

9.5.2 The Application of SUBDUE to Stigmergic Algorithm Ex-

traction

The Subdue graph of a very simple Nest structure is shown in Figure 9.18. The graph

has been generated by including edges between two bricks for each neighbour link present

6Subdue can be found online at http://cygnus.uta.edu/subdue/

9.5 Automatic Identification of Structural Patterns 229

1:B

2:R
3:G

UP

DOWN

SE

NW

1:B

2:R
3:G

UP

NW

Figure 9.18: The subdue graph for a Nest architecture. Because the links are undirected,
only half of the neighbour directions need be explicitly used – an UP link
between two bricks automatically implies the corresponding DOWN link.

4
2
1
3
5
6

7

8

9
10

11
12

a
b

5 instances

a
d

b c 2 instances

a b
c 2 instances

c
b
a

2 instances a b 2 instances

a 12 instances

c
b
a

d e
f

2 instances
d
b
a
c
e
f

g

h

1 instance

b
a

c d
e

2 instances

c
b
a

d 2 instances

a b c
d

2 instances

Figure 9.19: Structural patterns found by Subdue in the example architecture.

within the datastructure. It is immediately apparent that this graph is more complex than

necessary: every vertex is joined by two edges, each in opposing-direction pairs. Rather than

using a directed graph to represent a Nest structure, it is simpler to select a sub-set of the

possibly neighbour directions and produce an undirected graph, as shown on the far right.

The sub-set selected is arbitrary, but should include exactly one direction of each opposite

pair (i.e. one of UP/DOWN, one of N/S, one of NE/SW, and so on).

The example architecture from Section 9.4.1 was processed using the Subdue algorithm.

Nine patterns were found before the computational limit was reached (one second of pro-

cessing time for this simple architecture), after limiting the minimum pattern size to be two

vertices (bricks), and therefore removing the single-brick ‘pattern’. Each of these patterns

is shown in Figure 9.19.

The most common pattern is simply a short column of two bricks. This appears in the

original architecture as bricks (4, 2), (1, 3), (5, 6), (9, 10) and (11, 12). In the simple example,

9.5 Automatic Identification of Structural Patterns 230

two instances of this pattern were selected, ((9, 10) and (11, 12)), along with the only pattern

with a single instance shown (highlighted in blue). Both instances of the pattern highlighted

in orange fully cover the original architecture, and were the initial choice during the manual

pattern identification above.

9.5.3 Pattern Selection and Sets of Patterns

Clearly, the Subdue system is very capable of identifying repeating structural patterns

within the architecture graph. However, what this process does not produce is an analysis

of the relationship between patterns. These relationships are crucially important for the

accurate construction of the input architecture.

If it is decided that the patterns which are selected as the basis for decomposition of the

architecture are those with the maximum number of instances within that architecture, then

the small, two brick column (highlighted in green in Figure 9.19 would be chosen. While this

particular pattern is suitable for the leaf nodes, using a small, repeating unit to build the

long column requires the derived construction module to be assigned brick colours that would

render it self-activating – a situation which will later be shown to be extremely undesirable

(see Section 9.7).

If the patterns are selected on the basis of the amount of architecture covered by the sum

of all instances of the pattern, the six-brick ‘chair’ (highlighted in orange) is the obvious

candidate, and would appear to remove the need to consider any further patterns. However,

the manual investigation of this problem reveals that because of the relationship between the

two instances of this structural pattern, the resulting module must again be self-activating,

and the produced architecture would again deviate from the input. Clearly there is much

more to be considered than just the identification of possible repeating units within the

structure.

9.6 Modular Overlap and Brick Colour Assignment 231

9.5.4 Pattern Set Selection and Intractability

The experimentation and simple examples up to this point show that typically a mix of

repeating modules and ‘basic’ rules7 is required to successfully reproduce an architecture. It

is the selection of this set of modules and individual rules which proves to be the fundamental

problem facing any pattern-based ordering technique. As with any problem where “between

1 and x items must be selected from a set of size y”, the complexity of this selection is the

sum over a combinatorial. The relationships between this pattern and any other selected

patterns must also be considered:

Is the pattern self-activating? – if so, can any other construction be used to constrain

the repetition of this module? This is discussed further below in Section 9.7.

Does this pattern overlap with any other selected patterns? – since each brick should

only be placed once, overlapping modules cannot be selected as part of the same al-

gorithm.

How many instances of this pattern should be built? – as in the simple example, while

the small two-brick pattern was used to build the leaf modules, it was not used to build

the column despite its presence within that structure.

It is clear that without some mechanism to intelligently select patterns, this process

rapidly becomes intractable. Unfortunately, further complications – outlined in the following

sections – increase the complexity of this operation significantly. These problems will be

summarised in Section 9.8.

9.6 Modular Overlap and Brick Colour Assignment

In the example presented in Figure 9.12, the leaf modules are connected to the stem by a

single brick. By placing identical bricks along the spine module, multiple leaf modules can

be constructed. In order to trigger the construction of a leaf module however, this brick

7‘Basic’ rules in this context are those which build only a single, unique brick within the final structure,
as would be extracting using the simple ordering techniques described in Chapter 8.

9.6 Modular Overlap and Brick Colour Assignment 232

e
d

f

a 2
5

b c

3 4
1

76

...
...

...

Figure 9.20: A more complex module neighbourhood. The ordering dependencies between
multiple bricks and multiple modules considerably complicate the assignment
of consistent colours to bricks within a module’s neighbourhood.

must be identical with regards to both its colour and neighbourhood if the first rule of the

leaf module is to fire at each location a leaf module should be built.

Ensuring that the shared elements of the spine module and leaf modules in Figure 9.12

are appropriately coloured is simple, but where there are a larger number of bricks in the

overlapping neighbourhood – as shown in Figure 9.20 – arbitrarily assigning colours to such

bricks will not satisfactorily resolve this dependency.

9.6.1 Modular Overlap and The Increasing States Algorithm

Brick colour assignment, as performed by the Increasing States algorithm (Section ??),

ensures the accurate construction of a particular structure by examining the underlying

rules and guarantees that any undesired construction behaviour is eliminated.

However, there is no reason to assume that the Increasing States algorithm will assign

identical colours to bricks 7 and 8 of the column structure shown in Figure 9.13. The

probability of bricks a, b and c in Figure 9.20 being assigned identical colours each time

they appear within the global architecture is even more remote.

The states for these bricks will be assigned to ensure only that the construction of the

module, or rather the set of rules the Increasing States algorithm is operating upon, remains

controlled and precise.

It does not take into account any dependencies between this set of rules and any other

modules or architectures.

Assigning the colours of these bricks external to the Increasing States algorithm can, in

9.6 Modular Overlap and Brick Colour Assignment 233

contrast, prevent the algorithm from successfully controlling the execution of the rules, since

the external assignment does not consider the dependencies and post-rule links between the

rules which will build those bricks, and the rest of the module.

9.6.2 Modular Overlap and Ordering

It was implicit in the simple example presented in Section 9.4.1 that construction of the

column structure would begin before any of the leaf modules are built. However, this decision

may not always be simple. The structural fragment shown in Figure 9.20 shows three

modules, each with overlapping neighbourhoods. Because of this overlap, the rules for each

module must be extracted according to the predicted presence (or absence) of any bricks in

the overlap regions. In other words, the order in which modules are built is critical in the

extraction of the rules for each of those modules.

Using Figure 9.20 as an example, when extracting the rules for bricks 1 and 2 it must be

determined – using some hypothetical algorithmic process – if brick a has already been built,

since these rules may match against the presence (or absence) of that brick. Similarly, the

rule which builds 5 may match against bricks a, b and c, and so the existence of these bricks

at the time rule 5 should fire must be similarly be discovered by this algorithm. In other

words, the modules themselves must be ordered before rules can be extracted for individual

bricks.

Modules and Ordering

The benefit gained by establishing a modular stigmergic algorithm lies in the fact that each

module will be build using the same rules. Therefore, the ordering each brick is build is

identical in all instances of that module. Consequently, once the ordering of bricks within a

module is determined, it cannot be modified for any other instances of that module. This

can present significant problems as the module extract process proceeds.

Consider the rules presented on the right in Figure 9.21. Multiple instances of the three

modules originally shown in Figure 9.20 are now presented within the larger context of a

structure, and these modules have been ordered using the hypothetical algorithm discussed

9.7 Self-Activating Modules and Endless Construction 234

above. From these module orderings, it is implicit that:

• brick c is ordered after brick d (Rule 1) – that is, brick c will be present in the

neighbourhood of the rule that builds brick d (see right of Figure 9.21);

• brick 6 is ordered after brick c (Rule 3);

• brick e is ordered after brick 6 (Rule 4).

• brick d is ordered after brick e (Rule 2);

Each rule is extracted using the relative orderings of all bricks within the neighbourhood to

determine which bricks will be present when the brick in question is to be built. However,

given this ordering, a cyclic dependency is created between the three modules which can

never be satisfied. As modules 5, 6 and 7 are built each of the rules shown in Figure 9.21

must be applied. According to these rules, however, brick c must be present before brick

6 will be built, and brick 6 built before brick e can be placed. Brick d can only be placed

after brick e (since e appears within the neighbourhood in the rule for brick d), and finally,

the original brick – c – can only be built after brick d has been placed. Clearly this will

lead to an effective ‘grid-lock’, and no further rules will be applied in this area.

This example shows that despite the attempted use of modularity, the global order of

brick placement remains crucial in the accurate construction of an architecture. Attempting

to algorithmically order the bricks within individual modules, and additionally manage the

constraints and relationships which exist between modules, introduces a significantly complex

new layer to the problem of pattern extraction. The ordering process can only consider

bricks and their local neighbours: it cannot respect the notion of modules, since in essence

a stigmergic algorithm is flat, with each rule treated as the only significant element.

9.7 Self-Activating Modules and Endless Construction

Self-activating modules – those substructures whose construction produces the same set of

stimulating configurations as initiated the construction of the substructure originally – must

9.7 Self-Activating Modules and Endless Construction 235

e
d

f

a 2
5

b c

3 4
1

76

...

a 2
5

b c

3 4
1

76

e
d

f

a

b c

5 6
c

6 7
e

e
d

b c
d

1

2

3

4

5 6

7

Rule 1

Rule 2

Rule 3

Rule 4

5 6
c

6 7
e

e
db c

d

e after 6

d after e

c after d

6 after c

Rule 1 Rule 2

Rule 3 Rule 4

Figure 9.21: Ordering of the inner bricks within a module can be problematic if the rela-
tionship between modules is not consistent throughout the entire architecture.

be carefully considered if they are to be included in any stigmergic algorithm in which a spe-

cific architectural output is expected. It has been shown previously that without external

intervention by the user, or in the absence of any other structure, self-activating rules or

modules build forever. Clearly this is unacceptable if exact replication of a specific archi-

tecture is desired. In other words, the only occasion where a self-activating rule or module

can be allowed is where one of these constraints exists. Since user interaction is outwith the

specification of the Nest system, the latter must therefore be considered.

Figure 9.22 demonstrates an example situation in which a self-activating rule can be

employed successfully, without jeopardising the precision of the construction process. In

this construction, a self activating rule matches against brick X, and continues to build

downwards until it encounters the neighbourhood of cell Y. In order to close the gap, an

additional ‘bridge’ rule is required, since the rule must match against both the existing

column of red bricks, and the newly-encountered blue brick below.

9.7 Self-Activating Modules and Endless Construction 236

X

Y

X

Y

X

Y

X

Y

self-activating
rule

'bridge'
rule

Figure 9.22: An example of a ‘useful’ self-activating rule/module.

9.7.1 Structural Dependencies and Ordering

While this approach seems to successfully reconcile the difficulties associated with self-

activation, significant problems remain, because the red column’s construction depends on

the limitation provided by brick Y. The column building rule is self-activating, so as soon as

brick X is present the column construction may begin. Brick Y must then be placed before

three red bricks have been placed, at the very latest. If construction begins around brick X,

there are no mechanisms available to ensure that brick Y will be placed before construction

of the red column exceeds the number of bricks required to join as indicated.

To avoid this, it must be guaranteed that brick Y exists before brick X. This can be

achieved by starting construction at Y and building each brick around to X, thereby ensuring

that the relative ordering of brick Y is before that of brick X. Any self-activating module

within a stigmergic algorithm must depend crucially on the ordering of other modules within

the algorithm.

While this dependency is resolvable in the example presented in Figure 9.22, more com-

plex architectures with non-linear building behaviour (i.e. where more than one brick can be

placed at a given time during construction) will introduce more complex ordering. Resolving

the structural dependencies between multiple self-activating modules may be impossible.

One significant exception to the situation described above is possible: self-terminating

modules. However, these require the allowance of rotated rules. This type of module will be

discussed in the following section.

9.7 Self-Activating Modules and Endless Construction 237

2

- 1
24 3

X

1

3
4

2
- 1

2

4
3

1

3 4

X

+ rotations

symmetry

Figure 9.23: Building a ring structure using rotated self-activating rules. The particular
rotation which matches cannot be controlled, and the output structure may
therefore be inaccurate.

9.7.2 Self-Activating Modules and Rotation

One final possibility for safely deploying self-activating modules is if the structure which

causes construction to terminate is generated as part of the self-activating construction itself

– a self-terminating module. For instance, a ‘ring’ of construction, such as the simple ring

shown on the left in Figure 9.23 might employ a single rule to build most of the bricks (other

than brick X, which requires a ‘bridge’ rule, as above). However, to allow the construction

to encounter itself, the units of construction must rotate to produce a curve.

The consequences of allowing rule rotations to match during simulation were discussed

in Section 7.6. It was shown previously that if rotated rules were allowed to fire, stimulating

configurations may appear in which a rule may be able to fire in a number of different

rotations. In such situations, the progress of construction cannot be controlled or determined

in advance, and so it is not possible to guarantee that the final architecture will be accurately

produced. An example of such behaviour using a single, self-activating rule can be seen on

the right in Figure 9.23.

Modular Rings

The problems highlighted above (and previously in Section 7.6) stem from symmetries within

the structure, and matching rules. The single rule previously discussed is symmetrical

through the line formed by the two bricks within it. If the brick matched against has

sufficient empty cells surrounding it, the rule can fire in up to three different rotations in

9.8 Summary – Limitations of Pattern Extraction 238

any given neighbourhood.

A further example of this can be seen in Figure 9.24, part A. A single repeated module

can be built in rotated forms (by allowing rotated rules) with the intention of constructing

a ring8. However, if the module is symmetrical, there is no way for the rule which places

brick X to ensure that the clockwise curve is maintained. It is equally likely that brick X′

will be built.

The ring presented as part B of Figure 9.24 has been modified such that the symmetry

of the module can be broken by introducing an alternative brick colour. The neighbourhood

surrounding brick X′ is now differentiated from that surrounding brick X, and so the direction

of the curve can be maintained. However since rotated individual rules may fire, the rule

which builds brick A may match against brick X in a rotated form, and place a brick where

brick B should be.

It may be possible to contrive by hand a ring-structure built from repeating modules, but

such a stigmergic algorithm would have to manage not only the symmetry issues highlighted

here (and those in Section 7.6), but also the added complexity of increased post-rule conflicts

since rotated rules may match in many parts of the construction.

9.8 Summary – Limitations of Pattern Extraction

While initially a repeating pattern-based approach was appealing, the previous sections

have shown that this approach presents the most significant barrier between the algorithm

extraction techniques developed thus far, and achievement of the ‘holy grail’ goal stated

in Section 6.1: “. . . to discover the minimum set of rules necessary to produce a given

architecture.”[156]. While it is clear that compact stigmergic algorithms can only be pro-

duced where each rule is responsible for more than just a single brick within the final ar-

chitecture, extracting such an algorithm reliably in any situation has been shown to be an

enormous algorithmic undertaking.

8Closed-curve structures are commonly found in ‘natural’ structures, as demonstrated by the many cell
and envelope structures observed in biological nests[156, 17, 29, 94]. This type of structure is doubtless
of high functional worth, and therefore the replication of such features would certainly prove useful in any
physical application of stigmergy systems.

9.8 Summary – Limitations of Pattern Extraction 239

X X

A

B

X

X

X X

X

X

symmetry
breaking

symmetry

A.

B.

X
ARule A

Figure 9.24: Symmetry problems exist when attempting to build a cycle of self-activating
modules.

9.8 Summary – Limitations of Pattern Extraction 240

Self-activating patterns in particular present an unavoidable and fundamental problem.

While such patterns can generate potentially unlimited amounts of structured architecture,

if such systems are to be practically useful, this behaviour must be controlled.

Pattern extraction requires a global view of the architecture, and the construction beha-

viour of the algorithm. Considering individual parts of the architecture introduces further

complexity to a process whose computational complexity is already combinatorial.

9.8.1 Guaranteeing Minimality

Even with pattern-based ordering, in all but the simplest cases9 it is not possible to prove that

the algorithm produced is minimal. In order to do so, each different combination of patterns

which can successfully compose the whole architecture must be considered, in addition to

the many different orderings of bricks within each of those patterns. This problem is once

again combinatorial in nature, and while such an exhaustive search may be possible for small,

simple architectures, it inevitably becomes intractable for larger structures.

It now seems certain that it is not feasible to extract truly minimal stigmergic algorithms

from arbitrary structures, using the Nest model.

9.8.2 Modular Construction in Other Abstract Systems

Grammar-based structure generation systems such as L-systems10 have successfully exploited

repeated substructures in the of production large structures using compact algorithms (or

grammars, in this case). The ease with which such a closely-related abstract system can ac-

commodate modular design, while Nest systems cannot, serves to highlight the fundamental

difference between lattice-based agent systems and grammar-based abstract systems.

Within Nest systems, building is based wholly at the lowest level of granularity (i.e.

individual bricks). In contrast, the ‘structure’ in an L-system is refined, and the structure

is generated using a top-down approach as the grammar continually replaces elements and

refines the structural sentence.

9The structure shown in Figure 9.1 is a typical, simple example of a minimal algorithm.
10L-systems are discussed previously in Section 3.6.2.

9.8 Summary – Limitations of Pattern Extraction 241

This initial global definition of the structure is what ultimately enables grammar-based

systems to generate modular architectures. It is trivial to define a grammar which translates

the initial axiom into a number of appropriately arranged symbols, each of which can later

be rewritten as a module. This gradual refinement of the entire architecture is clearly a

powerful approach. However, it is entirely incompatible with the principles of stigmergic

assembly.

9.8.3 Stigmergy, Local Information and the Limits of Nest

The necessarily local nature of stigmergy, and in particular the model of qualitative stigmergy

presented in the Nest systems, has shown itself to be the source of extreme complication

which considering the automatic extraction of repeating modules and stigmergic algorithms.

As a stigmergic algorithm is executed, any implicit modularity is discarded: a stigmergic

algorithm is a collection of rules, and only rules.

This notion was first explored in Section 5.1.1, where it was shown that ‘building stages’

can often only be derived by watching the construction as it proceeds. It is now clear, given

the detailed consideration of modularity presented in this chapter, why this is often the case.

From the perspective of a designer, the constraints present in a modular stigmergic system

are significant: if a rule can fire in more than one place, all interactions between that rule

and and its neighbours – in each location – must be managed. This has been shown above

to be a formidable, and possibly intractable undertaking.

Chapter 10

Discussion

Overview

While this investigation into the behavioural possibilities of stigmergic systems is essentially

complete, several outstanding issues have yet be considered. In this chapter, the achieve-

ments of this thesis are noted, potential avenues for further research are suggested and some

remaining questions are brought together and discussed.

10.1 Designing Emergence with Stigmergy

The goal of this research, when it was first conceived, was to examine the possibility of

using the promising but elusive property of ‘emergence’ in real-world system design. While

now-classic examples of emergent behaviour are universally acknowledged as elegant and

impressive, it was unclear whether emergent phenomena could be made practical and useful

in arbitrary contexts.

The manipulation of any complex system requires an understanding of each of its com-

ponents, before significant conclusions can be drawn about the behaviour of the system as

a whole. As with many other investigations into emergent behaviour[100, 166, 85], the Nest

system was selected on the merits of its abstract nature. The simplicity of abstract systems

ensures the absence of any external influences affecting their behaviour and thus promises

a perfectly isolated experimental environment in which to explore the nature of emergent

10.2 Nest Systems and the Real World 243

systems. There is no doubt that despite the simplicity of the underlying rules which govern

the behaviour of these systems, a large range of distinct behaviours can be generated.

The results presented in Chapters 6, 7 and 8 have shown that it is possible to design

agent systems which use emergence, in the form of stigmergic building, and which achieve the

specific and arbitrary goals of the system designer. In parallel, the range of possible system

behaviours using the Nest model has also been explored, and the consequent limitations on

the application of abstract stigmergic systems to arbitrary problems (i.e. problems far from

any biological context) have been examined. In this manner, while it was not possible to

derive a technique which produced minimal stigmergic algorithms, this research should be

considered successful in achieving the above-stated goal.

10.2 Nest Systems and the Real World

Perhaps the most significant problem encountered during this study is ensuring that con-

struction stops at a suitable point; the greater part of Chapter 9 considers the range of

mechanisms for limiting building behaviour available within a Nest system. Despite this

focus, the problem remains intact – within the constraints of the Nest model, it is extremely

difficult to specify an algorithm which is compact yet does not exhibit unending construction

activity.

The continued presence of this problem, despite the work presented here, is purely a result

of the strict qualitative stigmergy which forms the foundation of the Nest model. The only

mechanism available with which to measure architectures beyond the local neighbourhood

is brick colour. It was shown in Chapter 6 that if no limit is placed on the number of brick

colours, any architecture of any size can be reproduced using a stigmergic algorithm.

However, for large architectures this results in vast numbers of distinct brick colours

(increasing at least linearly to the maximum dimension of the architecture1) which must be

available in the environment, and distinguishable by agents.

1See Section 9.2.3 for discussion regarding the lower limit of the number of brick colours required to build
an architecture of given dimensions.

10.2 Nest Systems and the Real World 244

10.2.1 Limiting Building Behaviour using Quantitative Stigmergy

Taking inspiration from biological swarm systems, the solution to this limitation seems ob-

vious: long-ranged communication is achieved via the dispersal of chemical signals – pher-

omones – throughout the environment. The strength of any dispersing signal decreases as

the distance from the source is increased. By allowing behaviour to be expressed only if the

strength of the signal exceeds (or alternatively is below) a given threshold, building behaviour

can be limited (or triggered) at distances far greater than the local sensory neighbourhood

of an agent. Furthermore, the strength of the initial pheromone deposit can then be tuned

to determine the distance at which this modification of behaviour will occur.

While such a mechanism is not compatible with the strictly qualitative Nest system, it is

a far more elegant and efficient means of measuring distance than increasing the complexity2

of the algorithm linearly as the dimensions of the architecture increase.

As highlighted in Section 4.8, there are no significant issues preventing the implementa-

tion of pheromone dispersal within the Nest-3.0 system. From an experimental perspective,

the addition of pheromone-based behaviour would enable the production of much simpler

algorithms by Nest algorithm designers.

10.2.2 Quantitative Stigmergy and Global Construction Control

Other forms of quantitative stigmergy could be employed to guide the behaviour of the

swarm. For instance, the local density of agents, when exceeding a certain threshold, could

trigger group activity. This behavioural mechanism is seen in the social insect systems upon

which Nest is based[12, 76].

Implementation of local agent density as a building trigger is again relatively simple

within a Nest-3.0 simulation3: if an agent measures the number of agents within its local

environment to be above a certain threshold, then construction rules will be matched against

the local brick configuration; otherwise, do nothing. The measurement of agent density could

even be achieved by pheromone deposits by each agent within the environment.

2See Section 10.3 for a discussion of ‘stigmergic complexity’.
3Measuring agent density is not possible within the original Nest-2.11.1 system, since only a single agent

‘exists’ within the environment (see Section 4.2.4).

10.2 Nest Systems and the Real World 245

Simplicity through Quantitative Stigmergy

If quantitative stigmergy is employed, the mechanism which initiates and drives continued

construction can be the same mechanism which limits the construction once it should be

stopped. When using qualitative stigmergy, a specific and unique local configuration must be

achieved in order to prevent future building, typically requiring the detailed specification of

that configuration and how it is to be reached by the collective. Many rules and stimulating

configurations must be managed in order to ensure this situation is achieved.

Quantitative stigmergic construction, on the other hand, ceases naturally once the in-

tensity of the initiating factor – proximity to a pheromone source, a high density of agents,

and so on – has decreased to an acceptable level, indicating that construction is no longer

required. A contrived example of this technique in practice may be the construction of

housing for agents: if the ‘nest’ structure has insufficient capacity, the local agent density

at any point will be elevated. This may trigger those agents who detect increased density

into building behaviours which extend and enlarge the nest structure. Once sufficient new

housing has been built, the local agent density will naturally drop, and without the stimulus

to continue building, agents can return to alternative activities.

Quantitative Stimuli and Abstract Simulation

Within the comfort of an abstract simulation, quantitative stimuli such as pheromone de-

posits can seem like an ideal mechanism for controlling the global behaviour of many agents.

In reality, however, this mechanism is subject to a variety of external forces, and would

very rarely provide the perfect, continuous gradient which might be assumed in computer

simulation.

Chemical deposits, for example, will diffuse throughout the environment and produce the

gradient discussed previously. However, this diffusion may never be perfect: chaotic flow and

the presence of matter in the environment (including, in this context, the structure being

built itself) will necessarily disturb this distribution, and therefore the chemical intensity

distribution may never match that suggested by Figure 10.2 later in this chapter.

Furthermore, pheromones tend to decay over time. Since there is no real embodiment

10.2 Nest Systems and the Real World 246

of time within a Nest stigmergic algorithm (other than the quantised notion implicit in the

brick ordering), it will be hard to account for pheromone decay in the building behaviour of

a stigmergic system which uses anything other than highly-abstract ‘chemicals’ and physics

during simulation.

10.2.3 Quantitative Stigmergic and Algorithm Extraction

The dual keystones enabling the effective extraction of stigmergic algorithms from existing

structures are the absolutely discrete mechanism which determines whether a rule will fire

or not, and the permanence of brick placement within the Nest system.

The removal of bricks by agents (‘excavation’; see Sections 4.2.5 and 5.4.4) allows for

a brick to be placed and removed any number of times before the ‘final’ architecture is

submitted for analysis. It has been shown that the algorithms developed previously in this

thesis can produce a viable stigmergic algorithm to build any architecture; consequently a

stigmergic algorithm can be found to reproduce the architecture in question. However, the

resulting stigmergic algorithm will only include ‘building’ rules. It is impossible to infer

the existence of any rules which remove bricks, since they leave no bricks, and therefore no

evidence, to indicate their activity during the simulation.

Similarly, the presence and decay of pheromones cannot be determined by examining a

snapshot of construction at some given time. By introducing a stronger sense of ‘time’ to

the simulation and stigmergic algorithm (through the existence and dependence on the con-

tinued decay of stimulating gradients, or the random movements of agents) the information

contained within a single snapshot of the architecture (and the state of the environment in

terms of and quantitative gradients) is now insufficient to precisely determine the triggers

responsible for each piece of building activity.

In other words, if the behaviour of a stigmergic system is determined to some extent by

factors which change as the simulation progresses, such as the addition, diffusion and decay

of quantitative factors, or the removal of bricks, then it may not be possible to infer the

presence of such factors without examining the behaviour of the system, instead of a static

snapshot of the system state in the form of an architecture.

10.3 A Measure Of Stigmergic Algorithm Quality 247

10.3 A Measure Of Stigmergic Algorithm Quality

It was shown in Chapter 6 that a stigmergic algorithm can be extracted from any architecture.

From that point, the focus of this research has been to improve the fundamental techniques

and produce ‘better’ algorithms. However, little has been presented to qualify one algorithm

as ‘better’ than any other. In this section, the notions of algorithm quality and complexity

are discussed.

10.3.1 Stigmergic Algorithm Complexity

Algorithmic complexity typically refers to the computational tractability of a given process.

However, in this context it is more useful to define the complexity of a stigmergic algorithm

as the amount of information required to specify a particular algorithm. More complex

stigmergic algorithms will feature a greater number of rules or colours, and therefore require

a more sophisticated agent to operate. The complexity of a stigmergic algorithm a might be

defined as:

complexity(a) = f(num rules(a), num brick colours(a)) (10.1)

Where the value of f() is stronly monotonic in the number of rules, and also strongly

monotonic in the number of brick colours. In other words, as the number of rules or bricks

increases, the complexity of the algorithm should increase proportionally.

What should be taken from equation is that the two factors which determine the ‘com-

plexity’ of a stigmergic algorithm are the number of rules, and the number of distinct brick

colours within the algorithm. A lower complexity is more desirable, since simpler agents

(simulated, robotic or otherwise) can be created which will ‘run’ the stigmergic algorithm.

Stigmergic algorithm complexity can therefore also be considered as stigmergic algorithm

size.

This notion of complexity is very similar to that of minimum description length ([55];

see [39] for a discussion of this within the context of Subdue and sub-structure discovery).

The minimum description length principle [138] states that the best theory to describe a set

of data is that which minimises the description length of the entire data set. Within the

10.3 A Measure Of Stigmergic Algorithm Quality 248

Nest context, the best algorithm is that which accurately reproduces the desired architecture

whilst minimising the size of the description of the algorithm.

10.3.2 Stigmergic Algorithm Quality

Since the quality of a stigmergic algorithm is now an important measure of the success of

any derived extraction process, it is important to more clearly state how such quality might

be determined. The quality of a stigmergic algorithm can be tied directly to the following

three factors:

Architecture Size – Algorithms which can produce larger architectures are, all other

factors aside, more desirable, since the algorithm responsible more efficiently describes

the construction process. In other words, if two algorithms A and B, of equal ‘com-

plexity’ (see above), can produce desirable architectures of sizes SA and SB, where

SA > SB, then algorithm A is ‘better’ than B. Stigmergic algorithm quality increases

with produced architecture size.

Architecture Desirability – While large architectures are generally considered ‘better’

than smaller ones, if the architecture does not fit the criteria of its users, the worth of

the algorithm is lessened. With regard to the body of work surrounding Nest systems

up to and including this thesis, the desirability of any architecture is determined ul-

timately by external observers4. As a result, the determination of the desirability of

an architecture is subjective, or at the very least determined to a large extent by the

context in which the stigmergic system exists, rather than through any objective or

universal means.

This reflects a discussion presented in Section 5.2, where the measure of the ‘coher-

ency’ of a structure is examined, and it is argued that any non-functional method of

determining the desirability of an architecture depends on the interpretation of the

structure by the observer.

4While [19, 22] featured work to automatically evaluate ‘more natural’ structures, the success of this eval-
uation can only be measured against the original judgements of the external observers as to what constitutes
a ‘natural’ structure.

10.4 Stigmergic Complexity 249

Whatever means are selected for measuring the desirability of an architecture, the

quality of a stigmergic algorithm increases with architecture desirability.

Algorithm Complexity – As was described above, the complexity of an algorithm is a

factor of both the number of rules, and the number of distinct brick colours within

it. An algorithm with lower complexity can be ‘performed’ by simpler agents, and

so a lower algorithm complexity is clearly desirable. Therefore, stigmergic algorithm

quality decreases as algorithm complexity increases.

10.3.3 Algorithm Quality and The Motivation for Emergence

The discussion presented above attempts to loosely formalise the assertion that a ‘good’ stig-

mergic algorithm is capable of producing more output (structure) for less input (algorithm

size or complexity). This embodies one of the original motivations (see Section 1.2.2) for

using stigmergic and emergent systems in general: complex, interesting and/or useful col-

lective behaviour emerging from the actions and interactions of relatively simple individual

agents. The simplicity of the agents, when considered in an abstract framework such as

Nest , is directly analogous to the simplicity of the algorithm which specifies their behaviour.

10.4 Stigmergic Complexity

An interesting by-product of the consideration of stigmergic algorithm complexity is a pos-

sible means of objectively measuring the complexity of ‘physical’ structure using these tech-

niques. If it is possible to extract a stigmergic algorithm from a structure, and then measure

the complexity of that algorithm, then it is possible to label the original architecture with

the complexity of the algorithm which is required to produce it. In other words, the relative

complexity of physical structures may be measurable by determining the complexity of the

stigmergic algorithm which is capable of reconstructing that architecture.

Such a measure would hold the most meaning if it could be shown that the extracted

algorithm is always minimal. The present lack of minimal algorithm-producing techniques

denies such strong measurement. However, despite this the progress towards this goal presen-

10.5 Beyond Modules: The Construction of Features 250

ted in this thesis allows some less strict assertions to be made. For instance, the Increasing

States algorithm has been shown to provide the minimal brick colour assignment for a given

set of rules. The minimal number of brick colours required to ensure an architecture will be

accurately reconstructed might therefore be used as a weaker measure of relative structural

complexity.

10.5 Beyond Modules: The Construction of Features

It could be concluded from the results presented here that it is simply not possible to

automatically produce biologically plausible, elegant and minimal stigmergic algorithms

given only the target architecture. However, the inability to extract minimal algorithms

is not necessarily a failing in our understanding of stigmergic systems, or in our ability to

formulate algorithmic procedures for dealing with repeating module constraints. It may not

be possible to process certain structures using any algorithm; their algorithms may only be

arrived at experimentally through examination of system behaviour.

For instance, the maze-construction algorithm shown in Section 5.2.4 and presented again

as Figure 10.1 produce regular features but lacks structural patterns. This algorithm would

be impossible to extract using the techniques developed and explored herein. Instead, it can

only be ’discovered’ through trial an error – or evolution with some suitable measurement of

fitness. The best algorithms, maximising the ratio between smaller algorithm size and larger

useful or desirable structure, may be those which defy analysis or extraction.

The elegance of the maze-building algorithm exists in part because of the application of

rotated versions of the two fundamental rules, but more importantly in the fact that the

quality of the produced structure is not dependent on large, intricate, repeated substructures.

Instead, the ‘useful’ aspects of the structure emerge from the empty space produced as the

bricks are placed. The subjectivity of structural quality was discussed in Section 5.2.2, along

with the argument that while some structures might appear modular and ‘coherent’, using

these as criteria for measuring the success of a stigmergic algorithm is always subject to

challenge.

10.6 Future Work 251

X

X

+ rotations

A B

Figure 10.1: With rotation enabled, seemingly-complex architectures with clearly defined
features (in this case corridors and chambers of definite sizes) can be produced
with extremely simple rule sets. The results of two different simulations are
shown in the right, both using the same two rules on the left, plus all rotations
through the Z-axis (effectively 8 rules if fully specified). This Figure also
appears in Section 5.2.4 as Figure 5.4.

10.6 Future Work

The work presented in this thesis suggests several avenues for further investigation. While

the work here has assisted in clarifying some of the limitations of the Nest system, both as

a model of biological stigmergy and as a tool of the design of emergent multiagent systems,

much of the vast range of capabilities remains to be explored. As a result of its modular

design and simple extensibility, the new Nest implementation presented in the Nest-3.0 tool

(Chapter 4) makes the further exploration of a wide variety of abstract stigmergic systems

a feasible prospect.

Several areas which deserve consideration beyond that presented in this thesis are dis-

cussed below.

10.6.1 Beyond The Nest Model

In this investigation, we have tested the potential of the strictly sematectonic5 Nest model

of stigmergic behaviour (in its abstract form) to its limits. Despite the apparent flexibility

and success demonstrated in [158, 156, 22, 19, 17], many of the implicit limitations present

5See Section 2.3.4 for a discussion of different forms of stigmergy.

10.6 Future Work 252

in purely-qualitative stigmergic systems have now been made clear, most significantly the

complexity of managing modular construction and the assembly of rotated structures.

As discussed earlier in this chapter, the addition of forms of quantitative stigmergy would

enable a far wider range of stigmergic algorithms to be developed. In particular, quantitative

stigmergy offers a solution to the problem of halting construction. The development of

algorithms which use this technique should be investigated in detail, so that the viability of

including this mechanism in non-biological systems can be ascertained.

Rotation and Local Compasses

While the capability to apply rotated instances of stigmergic algorithm rules is available in

both Nest implementations (Section 4.2.3), the development of algorithms which exploit rule

rotation has not been considered in depth, as a result of the conflict between rule rotation

and brick colour assignment (see Section 7.6).

However, the addition of gradient fields to the environment (e.g. through pheromone

diffusion) allows the introduction of a new type of rule rotation – local compass rotation.

Rather than relying on the internal compass to determine a global ‘north’, a ‘local north’

could be established along the line of increasing intensity of a particular pheromone gradient.

This is illustrated in Figure 10.2. While allowing this form of rotated rule matching does not

remove the problems highlighted in Section 7.6, it does allow stigmergic systems designers

to specify construction symmetrical around a central axis. It seems certain that this would

enable even simpler specification of stigmergic algorithms which build biological nest-like

structures.

The Relationship Between Geometry and Algorithm

If stigmergic systems based on the techniques developed in this thesis are physically imple-

mented, agents must work without the presence of a lattice, or by maintaining a represent-

ation of the environment as a lattice internally. As noted in Section 4.8, the exploration of

alternative lattice geometries may give far clearer insights into the effects artificial geometries

impose on stigmergically-constructed architectures. For example, by comparing hexagonal

10.6 Future Work 253

increasing
gradient

N

S

Figure 10.2: The application of a rule rotated to match ‘local’ north. If north is defined
by each agent as the direction along the line of increasing gradient, then rules
can be applied to build structure growing outward from the source of the
gradient.

stigmergic algorithms with those based in a cubic lattice, it is clear that the hexagonal cells

enable smoother curves to be build using dramatically fewer rules than would be required

within a cubic system.

Better understanding how the geometry of the lattice impacts upon the types of shapes

that can be easily built, and of how the symmetries within that lattice affect the rotation

of rules, will contribute significantly to a more complete understanding of the potential of

stigmergy in real-world applications.

10.6.2 Stigmergic Architecture Repair

As is typical in science, understanding of how a particular system works is often most aided

by observation of that system as it malfunctions. Much of the original research into nat-

ural stigmergy was performed by observing the behaviour of insects performing construction

behaviours, and in particular observing how those behaviours adapted in the presence of

external modification, or damage, to the architecture under construction [145, 76, 29] (see

Section 2.3.1). While some of the most valuable information is obtained by the structural

pathologies introduced by the insect’s attempt to continue construction, the ability to per-

form repairs on an existing structures would certainly by extremely valuable for almost any

application of stigmergic systems.

10.6 Future Work 254

G. Theraulaz and E. Bonabeau A Brief History of Stigmergy

Figure 3. The construction of an abnormal mud funnel in the nest of the Eumenid wasp Paralastor sp. When the
funnel is almost completed, a spherical hole (indicated by the arrow) is made. This hole is equivalent to stimulus S1 ,
which triggers funnel construction. As a consequence, the wasp builds a second funnel, over the hole and on top of
the !rst one already built.

highly stereotyped sequence. Stage 1 involves the building up of the funnel stem by
application of a series of mud pellets until it reaches a length of 3 cm. At Stage 2 the
wasp ceases to build uniformly upward, and by adding more mud to one side begins
the construction of a uniform curve in the stem of the funnel. Once the curve has been
completed, Stage 3 begins with the formation of a bell with the splaying of the stem to
form a uniform !ange of approximately 2 cm diameter. At Stage 4, the !ange is next
widened more on the side nearest to the stem than elsewhere, thus giving the bell a
characteristic asymmetry in one direction. Finally at Stage 5, the sides of the bell are
formed by building uniformly downward from the edge of the !ange. At the end of
each stage of building, the stimuli for the responses that lead to the completion of the
next stage are those that the animal encounters as a consequence of its earlier behavior.
What happens when the stimuli that trigger the beginning of a previous building stage
are encountered by the wasp just as it "nishes the end of a particular stage? Smith
examined this question in one of his experiments. A spherical hole located in the
neck of a funnel is made just after Stage 3 has been completed (see Figure 3). After
examining the damage several times, the wasp begins the construction of a second
funnel, over the hole and on top of its "rst funnel. This result is extremely important
for anyone who wants to understand the coordination of building activities in social
wasps and more generally in social insects. In a solitary species such as Paralastor
sp., the indirect coordination of its behavior through the previous consequences of its
building actions results in a sequential-like behavior. There are two consequences to
this behavior.

First, the order in which stimuli arise in the course of the construction must follow a
precise sequence. If by chance a stimulus triggering a set of building actions that gives
rise to a previous subelement of the architecture is present at a later stage, this will
automatically lead to a redundant structure and an abnormal nest architecture. This
observation, as we will see in the next section, has important consequences in the
coordination of building activity in social wasps.

Second, if one wasp does not distinguish the product of its own activity from that of
another wasp, the two wasps can in principle work at completing the same nest struc-
ture. One wasp could continue the work of the other at whatever stage of construction
of the nest. Such a mechanism may then in turn be a step toward indirect cooperation
between individuals. This is precisely the mechanism that Grassé had in mind when
he introduced the concept of stigmergy.

Arti"cial Life Volume 5, Number 2 103

S1

R1

S2

R2

S5

R5

S1

R1

S2

R2

S5

R5

Stop

time

Figure 10.3: When a stimulating environmental configuration is created out of sequence,
the pathological building behaviour of the stigmergic agent is revealed. Taken
from [157], originally presented in Section 2.3.1 as Figure 2.4.

It is currently unclear how stigmergic algorithms within the Nest system might incor-

porate repair behaviours. An excellent validation of any form of abstract stigmergic model

however would be the demonstration of similar pathologies when the virtual architecture is

similarly damaged by experimenters during simulation.

Furthermore, it is currently unknown as to how stigmergic systems based on the Nest

model could perform successful repairs to a structure during simulation, or how an existing

stigmergic algorithm must be modified to incorporate such behaviour. If damage to the

structure occurs during building, it is almost certain that the stimulating configurations

within that region will not match those which trigger the rules which originally built bricks

there. Therefore it is likely that to perform repair, the architecture in that local area may

have to be modified, by the removal of bricks6, in order to bring it to a state where some

repair routines can operate.

It is also crucial that defects in structure can be detected as errors, rather than as ac-

curate and timely configurations of bricks (that is: occuring in the correct region of space

at the appropriate moment during construction). As shown in Figure 2.4, if an erroneous

configuration is not recognised as an error, structural deviations can easily be produced.

This line of investigation will be of great worth if stigmergic construction is to successfully

6Excavation and the issues surrounding brick removal in Nest and stigmergy in general are considered in
Section 4.2.5

10.6 Future Work 255

transfer from the simulated domain to the physical world.

10.6.3 An Interactive Approach to Modular Deconstruction

The discussion of automatic pattern detection in structures (Chapter 9) concluded that the

methodology considered was now currently tractable, even for architectural deconstruction

problems which are easily performed by the observer.

A promising approach to performing pattern-based algorithm extraction may leverage

the aptitude of human observers to identify likely patterns, via a software interface, and

allow the software to identify repetitions of this pattern, coverage of the architecture, and

possible undesirable interactions (such as those caused by a self-activating module). In this

manner, a part of the combinatorial problem of pattern identification can be spread between

the human brain, a natural pattern-finding machine, and the meticulous analysis of the

computer.

Chapter 11

Conclusions

In this final chapter, the achievements and advances presented in previous chapters are

summarised. Key points are highlighted in bold typeface.

Nest-2.11.1

In the work presented here, the field of stigmergic construction, and in particular the Nest

model of stigmergy developed originally by Bonabeau, Theraulaz et al. has been

considered in detail[158, 156, 17, 19, 22, 29]. The Nest-2.11.1 software, which was used to

explore and latterly evolve stigmergic algorithms, is also briefly described. Several assertions

were presented by Bonabeau et al. as a result of their initial experimentation:

1. “All biological-like architectures . . . are generated by coordinated building algorithms,

in which the shape to be build is naturally decomposed into modular subshapes

. . . defining corresponding building stages.”[156]

2. “No ‘interesting’ pattern can be generated using a single type of brick.”[19]

3. “The coordinated subspace [is] relatively small and compact . . . This property is con-

firmed by random exploration of the rule space.”[156]

257

Criticism

The original investigations into simulated stigmergic construction were critically discussed,

and flaws in their use of a genetic algorithm to search for ‘coordinated’ algorithms were

highlighted, including:

• Using a fixed-length genome, and thus fixing the size of ‘coordinated’ algorithms, and

penalising shorter algorithms

• Using a subjective fitness function which penalises the existence of interesting archi-

tectural substructures smaller or larger than a 5× 5× 5 cube

It was finally asserted that the closeness between algorithms and architectures actually

operates at the level of building stages, rather than individual rules, within an algorithm.

Instead, it is shown that two algorithms which contain identical or similar building

stages will produce identical or similar architectures .

The relationship between the Nest model and other abstract systems are also explored.

Strong similarities exist between lattice swarm systems and cellular automata, while the

model fundamentally differs from L-systems, another prominent ‘constructive’ abstract sys-

tem.

Nest-3.0

The original abstract stigmergic software developed (Nest-2.11.1) suffers from the short-

comings of being implemented only on a single computing platform (Unix and X-Windows)

using a terse implementation language (C), and being too closely tied to the original Nest

model description. In order to remove any future experimental constraints, a new

Nest simulation implementation was developed, named Nest-3.0 .

From the outset, this software was written to run on a wide range of computing platforms

(Section 4.3). By selecting the C++ language for internal data representation, the speed of

operations on fundamental Nest entities (cells, agents, rules, architectures and so on; Section

4.4.1) is maximised. The user interface is written using the widely available OpenGL graphics

258

language, enabling the real-time 3D display of generated architectures. The high-level Ruby

language acts as a glue between the former and the latter, and enables fast prototyping of

new simulation features, and additions to the Nest model. Novel features within Nest-3.0

include:

• Creation of arbitrarily-sized sensory neighbourhoods (Section 4.2.2)

• True multiagent system, using multiple agents with distinct locations and

arbitrary internal state (Section 4.2.4)

• Brick excavation in addition to building; in general, stigmergic rules which

specify arbitrary neighbourhood modification (Section 4.2.5)

• Flexible brick state matching against subsets of all brick values (Section 4.2.6)

• Full rotation of rules, with novel speed optimisations for rotating cubic

neighbourhoods (Section 4.5.2)

• Consistent hexagonal graph lattice production via ‘hypercells’ (Section 4.6)

Further extensions, along with suggested implementation methods, are also noted.

Automatic Generation of Coordinated Algorithms

In this section the original approaches adopted by Bonabeau et al. to search for ‘interesting’

structures were considered, along with the assertions they made regarding what characterist-

ics a stigmergic algorithm must have to produce such structures. The notions of ‘coordinated

algorithm’, ‘building stages’ and ‘coherent structures’ have been examined and their vari-

ous weaknesses exposed. Despite closely examining the description presented in [156], an

unambiguous and testable understanding of what ‘coherence’ means with regards to an ar-

chitecture, and what ‘coordination’ means with regards to a sequence of stigmergic rules,

remains elusive.

Temporarily accepting the informal notions of coherent structure and coordinated al-

gorithms, it is then shown that structures which do not fit with these definitions

259

may still exhibit interesting properties despite variations in their precise appearance

over a number of simulation runs. The strongest example presented as a challenge to the

notions of ‘coherence’ produces regular ‘maze’ structures using only two rules. Despite struc-

tural differences, this algorithm reliably produces specific architectural features.

Post-Rules

The concept of post-rules (along with pre-rules and meta-rules) was introduced as a means

to avoid some of the ambiguity present outlined above, and as a better means for automat-

ically generated stigmergic algorithms for the systematic exploration of the space of possible

rule sets. However, despite the promise post-rules would appear to hold for predicting al-

gorithm behaviour, they can only indicate which rules could fire next, instead of which rules

will fire next during simulation.

Numerical calculations indicate that while the size of of the problem space has been hugely

reduced, it is still computationally intractable to systematically explore the entire space

even for simple systems. The approach adopted by Bonabeau et al. is therefore

impractical as a means for thoroughly examining the potential behaviour of

stigmergic systems.

Algorithm Extraction

As indicated by the title of this thesis, the ultimate goal is to investigate means of designing

systems which use emergent behaviours to achieve arbitrary goals. Within the context of

stigmergic construction, these arbitrary goals are any structure or valid arrangement of

bricks within the model. It is therefore the aim of this work to devise means of producing

an emergent, stigmergic system which produces these architectures.

A simple method of extracting a stigmergic script from any architecture has

been developed. The two keys steps in this process are

1. Assign a random valid order to the bricks within the architecture

260

2. Assign a unique colour to each brick within the architecture to avoid any potential rule

conflicts during simulation.

If the ordering of bricks placed is known, then the neighbourhood around a brick at the

time that brick was built can be determined by removing all bricks from the neighbourhood

which are ordered after the brick to be placed. This modified neighbourhood is therefore

identical to the rule which placed the brick in question. The two steps of ordering and state

assignment are sufficient to produce a set of rules which reliably reproduce the architecture

supplied to the process.

Most importantly, this process shows that any architecture can be decomposed into

a set of stigmergic rules. In other words, no architecture exists, representable within the

limits of the Nest-3.0 system, that cannot be decomposed using this technique. However,

algorithms produced by this process are far from optimally small. Instead, the algorithms

always contain the same number of rules, and distinct colours of bricks, as there are bricks

in the architecture.

The Increasing States Algorithm

To reduce the number of distinct brick colours in an extracted stigmergic rule set, a novel

algorithm was invented. The Increasing States algorithm produces minimal brick

colours for any given rule set. A new brick colour is added to the algorithm only when it

is required to prevent a rule firing out of sequence. Such conflicts are identified by analysing

the rules within the algorithm and using post-rules to determine which rules might fire

sequentially.

The purpose of distinct brick colours – necessary in qualitative stigmergy – is clarified in

a discussion of the limitations of using material qualities as a mechanism for managing rule

activation. It is shown that if rotated rules are allowed to fire within a simulation (in other

words, if a stigmergic agent has a limited internal compass), then it is impossible to fully

constrain the space of stimulating configurations which will cause that rule to fire.

261

Ordering using a Genetic Algorithm

It is shown that different brick orderings can affect the minimal number of brick colours

required for a stigmergic algorithm. Similarities between the ordering of bricks within a

structure, and other node ordering problems such as the classic Travelling Salesman Prob-

lem (TSP) were also noted, along with distinctions. A genetic algorithm (GA) approach was

selected to perform the ordering, and the importance and suitability of genome representa-

tions are discussed in relation to valid brick orderings. Direct representations of node order

require sophisticated crossover and mutation operators to ensure that the resulting offspring

solutions remain valid. Indirect representations require more effort to determine the brick

order from the representation, but crossover and mutation can be applied more simply.

The results of GA experiments have been presented, and the approach has

been shown as viable in reducing the number of brick colours required to repro-

duce arbitrary architectures, although initial populations of random solutions tend to

contain solutions which are near the best found.

Patterns, Structure and Nest Stigmergy

Despite the optimisation of this algorithm extraction approach, the number of rules within

an algorithm remains equal to the number of bricks in the input structure. It is shown that

in order to produce smaller algorithms, rules within the algorithm must fire repeatedly, and

this repetition must be carefully controlled such that construction behaviour does not stray

from that which is desired.

Two types of fundamental repetition are identified within single rules – independent and

self-activating. This same distinction exists within groups of rules, or modules. Independ-

ently repeating modules are also termed leaf modules. The discussion of repetition

clarifies the original discussion of building states in [156], by demonstrating the

difference using the properties of rules as explored in post-rule investigations.

262

Accurate Construction

The issue of ensuring accurate construction with the presence of repetition is considered in

detail. The necessity of brick colours as a device for global structure measurement is shown.

It is also shown that the minimum number of brick colours required to build a

structure of maximum dimension n bricks is n/2. Furthermore, it is demonstrated

that in the absence of external structures, self-activating modules can never be

used within a stigmergic algorithm.

Automatic Module Division and Tractability

The issue of automatic extraction of repeated substructures, modules or building stages is

considered in detail, and it is shown that this problem holds the same combinatorial

limitations as automatic algorithm generation. Furthermore, an additional battery of

combinatorial problems is layered atop, including:

• Detection of self-activating modules

• Prevention of endless construction when using self-activating modules

• Brick colour assignment within module overlap areas

Ultimately, automatic building stage extraction requires a global view of the building

behaviour and rule interactions of the algorithm as it is generated, and the derivation of any

algorithmic ‘shortcuts’ has not been possible at this time.

A measure of the power or quality of stigmergic algorithms has been pro-

posed. Through further discussion of the issues raised in this work, it has also become

clear that stigmergic algorithms are most powerful when they are not employed to produce

exact structures. In contrast, compact stigmergic algorithms can produce large architectures

with architectural features, whose value may only be exposed via some form of functional

evaluation.

Avenues for further research which may show practical merit, or improve our understand-

ing of various aspects of alternative stigmergic implementations, form the conclusion of the

original work presented here.

263

Designing Emergence and Swarm Construction, Redux

In the introduction the questions which would guide this investigation were presented and

made explicit. At this point, it is useful to reconsider those questions, and where possible,

provide answers.

Is it possible to use sematectonic stigmergy to build arbitrary structures?

It was demonstrated in Chapter 6 that a stigmergic algorithm can be produced for any

structure representable within the Nest model of space. The quality of this algorithm, in re-

lation to those which are ‘hand-made’, is often poor, but this does not detract from the proof

that there exists no structure which cannot be decomposed into some set of sematectonic

stigmergic rules.

If it is possible to use stigmergy for arbitrary tasks, how can it be used?

This has also been demonstrated in Chapter 6. By ordering an architecture, it is possible to

extract the stigmergic rules which will build each brick. Unique colours can then be applied

to each brick to ensure that the algorithm executes as intended.

Can the application of stigmergy to arbitrary construction problems be auto-

mated using some algorithm process, and if so, what are the algorithms required?

The mechanisms outlined in Chapter 7 and Chapter 8 describe two possible mechanisms for

the automatic extraction of stigmergic algorithms. This process must consist of two steps:

ordering, and state-assignment.

A novel process – the Increasing States Algorithm – has been devised to determine the

minimal number of brick colours which will allow the structure to be reproduced without

possibility of error. This algorithm also assigns brick colours to the stigmergic rules. This

algorithm was described in Chapter 7

An approximate method ordering the bricks within a structure, based on genetic al-

gorithms, has been presented and shown to assist in minimising the number of brick colours

264

required to produce an arbitrary structure. This process was described, and experimental

results have been presented in Chapter 8.

What are the limitations, if any, of the Nest model?

It was seen in Chapter 8 that in order to produce a compact stigmergic algorithm, the

number of bricks built must be greater than the number of rules within the algorithm.

Several sections of an architecture must be built using the same sets of rules, and therefore

it must be decomposed into repeating structural units for this to be achieved.

It has been shown in Chapters 9 and 10 that introducing the repetition of rules within

a strictly sematectonic model such as Nest also brings significant constraint issues which

must be considered by any process wishing to extract a stigmergic algorithm. To produce

an artefact of any size larger than the local perceptual neighbourhood of an agent using

sematectonic stigmergy, a certain minimum number of brick colours (increasing with the

size of the artefact) are required. If external implementation constraints place a limit on

the number of distinct usable types of building material, purely-sematectontic stigmergy

can only be used to build structures of a limited size, determined by the size of the agent’s

perceptual neighbourhood.

Furthermore, the repetition of certain types of structure introduce the possibility of con-

struction which continues indefinitely. There are no mechanisms within the Nest model

which can constrain this form of construction. Finally, if agents are able to match rotated

versions of rules, production of the desired architecture, without deviations, cannot be guar-

anteed. In summary, sematectonic stigmergy has been shown to be insufficient to develop

compact algorithms for the construction of arbitrary structures.

If any limitations exist, can they be overcome and if so, how?

The strong limitations encountered by this investigation serve to highlight the importance

of quantitative mechanisms within stigmergic systems, an example of which is the diffusion

of pheromone within the environment. These mechanisms can provide important inform-

ation which is capable of transmission beyond the local perceptual neighbourhood of the

265

participating agents.

Very importantly, such mechanisms can provide means of roughly measuring the distance

between two points in the environment (i.e. the current distance from the source of the

stimuli). This can therefore be used to measure the size of architectural features which are

larger than the bricks within the direct perceptual neighbourhood of an agent. Quantitative

stigmergy may also provide means to limit the construction of ‘self-activating’ modules,

enabling the use of this type of repetition within stigmergy systems.

Final Words

“We believe that our study constitutes a first step towards a deeper under-

standing of the origins of natural shapes in terms of the logical constraints that

may have affected the evolutionary path.”[156]

It is hoped that this work presents a more thorough and detailed investigation into the

nature of abstract stigmergic systems of the type introduced by Bonabeau, Theraulaz et al.

than available previous to its inception. It has been shown that while the Nest model affords

appealing examples of emergent behaviour, the strict qualitative behaviour combined with

the vast simplification of space within of the lattice model makes specification of elegant,

biologically plausible algorithms difficult. The aspects of this problem which render the

automatic design of minimal stigmergic algorithms impossible at this time have now been

highlighted and explored in detail.

While it has not been possible to fully realise the goal of this research on the outset –

to produce minimal stigmergic algorithms for building arbitrary structures – the advances

in our understanding of stigmergic systems should remain invaluable for anyone considering

the use of stigmergic techniques in any situation.

266

.

Bibliography

[1] J. Adam. Emergence, abstract multiagent systems and multi-state networks. Technical
Report CSM-373, Department of Computer Science, University of Essex, 2002.

[2] Andrew Adamatzky and Owen Holland. Edges and computation in excitable media.
In Proceedings of the Sixth International Conference on Artificial Life, 1998.

[3] Andrew Adamatzky and Owen Holland. Phenomenology of excitation in 2d cellular
automata and swarm systems. Chaos, Solitons and Fractals, 9:1233–1265, 1998.

[4] B. K. Ambati, J. Ambati, and M. M. Mokhtar. Heuristic combinatorial optimization by
simulated darwinian evolution: a polynomial time algorithm for the traveling salesman
problem. Biological Cybernetics, 65:31–35, 1991.

[5] Carl Anderson. Self-organization in relation to several similar concepts: Are the bound-
aries to self-organization indistinct? Biological Bulletin, 202:247–255, 2002.

[6] E. Anderson and M. Ferris. Genetic algorithms for combinatorial optimization: The
assembly line balancing problem. ORSA Journal on Computing, 6:161–173, 1994.

[7] S. Aron, J.-L. Deneubourg, S. Goss, and J. M. Pasteels. Functional self-organisation
illustrated by inter-nest traffic in the argentine ant iridomyrex humilis. In W. Alt and
G. Hoffman, editors, Biological Motion, pages 533–547. Springer-Verlag, 1990.

[8] Nils A. Baas and Claus Emmeche. On emergence and explanation. Intellectica,
202(25):67–83, 1997.

[9] W. Banzhaf. The “molecular” traveling salesman. Biological Cybernetics, 64:7–14,
1990.

[10] Michel Baranger. Chaos, complexity, and entropy: A physics talk for non-physicists.
available online at http://necsi.org/projects/baranger/cce.pdf (2001).

[11] R. Beckers, J.-L. Deneubourg, and S. Goss. Trails and u-turns in the selection of the
shortest path by the ant lasius niger. J. Theor. Biol., 159:397–415, 1992.

[12] R. Beckers, O. E. Holland, and J. L. Deneubourg. From Local Actions to Global Tasks:
Stigmergy and Collective Robotics. MIT Press, 1994.

[13] Mark A. Bedau. Weak emergence. In J. Tomberlin, editor, Philosophical Perspectives:
Mind, Causation, and World, pages 375–399. Blackwell, 1997.

[14] G. Beni. From swarm intelligence to swarm robotics. In Proc. of Workshop on Swarm
Robotics, 8th Intl. Conf. on Simulation of Adaptive Behaviour (SAB’04). MIT Press,
2004.

BIBLIOGRAPHY 268

[15] Jean Paul Benzecri. L’analyse des donnèes. II. L’analyse des correspondances. Dunod,
Paris, 1973.

[16] E. Bonabeau, M. Dorigo, and G. Theraulaz. Inspiration for optimization from social
insect behaviour. Nature, 406:39–42, 2000.

[17] E. Bonabeau, G. Theraulaz, and M. Dorigo. Swarm Intelligence - From Natural to
Artificial Systems. Oxford University Press, 1999.

[18] Eric Bonabeau. From classical models of morphogenesis to agent-based models of
pattern formation. Artificial Life, 3(3):191–211, 1997.

[19] Eric Bonabeau, Sylvain Guerin, Dominique Snyers, Pascale Kuntz, and Guy Theraulaz.
Three-dimensional architectures grown by simple ‘stigmergic’ agents. BioSystems,
56:13–20, 2000.

[20] Eric Bonabeau, Florian Henaux, Sylvain Guérin, Dominique Snyers, Pascale Kuntz,
and Guy Theraulaz. Routing in telecommunications networks with “smart” ant-like
agents. 98-01-003, Santa Fe Institute, 1998.

[21] Eric Bonabeau, Andrej Sobkowski, Guy Theraulaz, and Jean-Luis Deneubourg. Ad-
aptive task allocation inspired by a model of division of labor in social insects. In
Dan Lundh, Bjorn Olsson, and Ajit Narayanan, editors, Biocomputing and Emergent
Computation, pages 36–45. World Scientific, 1997.

[22] Eric Bonabeau, Guy Theraulaz, and François Cogne. The design of complex architec-
tures by simple agents. Technical Report 98-01-005, Santa Fe Institute, 1998.

[23] Adrian Bowyer. Automated construction using cooperating biomimetic robots. Tech-
nical Report Technical Report 11/00, University of Bath, 2000.

[24] R. M. Brady. Optimization strategies glean from biological evolution. Nature, 317:804–
806, 1985.

[25] V. Braitenberg. Vehicles: Experiments in Synthetic Psychology. MIT Press, 1984.

[26] Rodney A. Brooks. A robust layered control system for mobile robots. Journal of
Robotics and Automation, RA-2(1), 1985.

[27] Rodney A. Brooks. Intelligence without reason. In John Myopoulos and Ray Reiter,
editors, Proceedings of the 12th International Joint Conference on Artificial Intelligence
(IJCAI-91), pages 569–595, Sydney, Australia, 1991. Morgan Kaufmann.

[28] Jerome Buhl, Jean-Louis Deneubourg, and Guy Theraulaz. Self-organized network of
galleries in the ant messor sancta. In M. Dorigo, G. Di Caro, and M. Sampels, editors,
Ant Algorithms:, pages 163–175. Springer-Verlag, 2002.

[29] Scott Camazine, Jean-Louis Deneubourg, Nigel Franks, Eric Bonabeau, Guy
Theraulaz, and James Sneyd. Self-Organization in Biological Systems. Princeton,
1999.

[30] Peter Cariani. Artificial Life II, SFI Studies in the Sciences of Complexity, chapter
Emergence and Artificial Life, pages 775–797. Addison-Wesley, 1991.

BIBLIOGRAPHY 269

[31] Pablo Miranda Carranza and Paul Coats. Swam modelling – the use of swarm intelli-
gence to generate architectural form. In Proceedings of Generative Art 2000, 2000.

[32] Cristiano Castelfranchi. The theory of social functions: Challenges for computational
social science and multi-agent learning. Cognitive Systems, 2001.

[33] A. D. Channon and R. I. Damper. Perpetuating evolutionary emergence. In Proceedings
of SAB ’98, 1998.

[34] F. Chantemargue and B. Hirsbrunner. A collective robotics application based on
emergence and self-organization. In Proceedings of ICYCS’99, Nanjing, China, 1999.

[35] Maurice Clerc. When ant colony optimization does not need swarm intelligence (avail-
able online at http://clerc.maurice.free.fr/pso/aco/aco swarm intelligence.zip), 2000.

[36] P. S. Coates, N. Healy, C. Lamb, and W. L. Voon. The use of cellular automata to
explore bottom up architectonic rules, 1996.

[37] Joel E. Cohen. Human population: the next half century. Science, 302:1172–1175,
November 2003.

[38] Rosaria Conte and Nigel Gilbert. Artificial Societies: The Computer Simulation of
Social Life, chapter 1, pages 1–15. UCL Press, London, 1995.

[39] Diane J. Cook and Lawrence B. Holder. Substructure discovery using minimum de-
scription length and background knowledge. Journal of Artificial Intelligence Research,
1:231–255, 1994.

[40] M. D. Cox and G. B. Blanchard. Gaseous templates in ant nests. J. Theor. Biol.,
204(2):223–238, 2000.

[41] James P. Crutchfield. The calculi of emergence: Computation, dynamics and induction.
Physica D Special Issue on the Proceedings of the OJI International Seminar, 1994.

[42] James P. Crutchfield. Integrative Themes: Santa Fe Institute Studies in the Sciences
of Complexity XIX, chapter Is Anything Ever New? Considering Emergence. Addison-
Wesley, 1994.

[43] James P. Crutchfield, J. D. Farmer, N. H. Packard, and R. S. Shaw. Chaos. Sci. Am.,
255:46–57, 1986.

[44] Vince Darley. Emergent phenomena and complexity. In R. Brooks and P. Maes,
editors, Artificial Life IV, Proceedings of the Fourth International Workshop on the
Synthesis and Simulation of Living Systems, pages 411–416. MIT Press, 1994.

[45] J.-L. Deneubourg and S. Goss. Collective patterns and decision making. Ethology,
Ecology and Evolution, 1:295–311, 1989.

[46] J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and L. Chretien.
The dynamics of collective sorting: Robot-like ants and ant-like robots. In From
Animals to Animats: Proceedings of the First International Converence on Simulation
of Adaptive Behavior. MIT Press, 1991.

[47] R. Diestel. Graph Theory. Springer, 2000.

BIBLIOGRAPHY 270

[48] M. Dorigo and L. M. Gambardella. Ant colonies for the travelling salesman problem.
BioSystems, 43:73–81, 1997.

[49] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary Com-
putation, 1(189):53–66, 1997.

[50] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics - Part
B, 26(1):29–41, 1996.

[51] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. MIT Press, 2004.

[52] H. A. Downing and R. L. Jeanne. Nest construction and the paper wast, polistes: A
test of stigmergy theory. Animal Behaviour, 36:1729–1739, 1988.

[53] K. Eric Drexler. Engines of Creation: The Coming Era of Nanotechnology. Anchor,
1986.

[54] Alexis Drogoul and Jacques Ferber. From tom-thumb to the dockers: Some experie-
ments with foraging robots. In From Animals to Animats II: Proceedings of the Second
International Converence on Simulation of Adaptive Behavior, pages 451–459. MIT
Press, 1993.

[55] B. Edmonds. What is complexity? – the philosophy of complexity per se with ap-
plication to some examples in evolution. In F. Heylighen and D. Aerts, editors, The
Evolution of Complexity. Kluwer, Dordrecht, 1999.

[56] A. Espinas. Des Sociétés animales – Essais de Psychologie Comparée. F. Alcan., 1877.

[57] Hsiao-Lan Fang, Peter Ross, and Dave Corne. A promising genetic algorithm ap-
proach to job-shop scheduling, re-scheduling, and open-shop scheduling problems. In
Stephanie Forrest, editor, Proc. of the Fifth Int. Conf. on Genetic Algorithms, pages
375–382, San Mateo, CA, 1993. Morgan Kaufmann.

[58] R. P. Fletcher, C. Cannings, and P. G. Blackwell. Modelling foraging behavior of ant
colonies. In Lecture Notes in Artificial Intelligence 929, pages 772–783. 1995.

[59] D.B. Fogel. An evolutionary approach to the traveling salesman problem. Biological
Cybernetics, 60:139–144, 1988.

[60] S. Forrest. Emergent behavior in classifier systems. Physica D, 42:213–227, 1990.

[61] Stephanie Forrest. Emergent computation: Self-organising, collective and cooperative
phenomena in natural and artificial computing networks. Physica D, 42:1–11, 1990.

[62] Mark S. Fox. Constraint-directed Search: A Case Study of Job-Shop Scheduling. Mor-
gan Kaufmann Publishers, 1987.

[63] N. R. Franks. Teams in social insects: group retrieval of prey by army ants. Behav.
Ecol. Sociobiol., 18:425–429, 1986.

[64] N. R. Franks. Army ants: a collective intelligence. Am. Sci., 77:138–145, 1989.

BIBLIOGRAPHY 271

[65] T. Fukuda, S. Nakaggawa, Y. Kawauchi, and M. Buss. Structure decision method
for self-organizing robots based on cell structure – cebot. In Proceedings IEEE In-
ternational Conference on Robotics and Automation, pages 695–700. IEEE Computer
Society Press, 1989.

[66] P. Funes and J. Pollack. Computer evolution of buildable objects. In P. Husbands and
I. Harvey, editors, Fourth European Conference on Artificial Life, pages 358–367. MIT
Press, 1997.

[67] P. Funes and J. Pollack. Computer evolution of buildable objects. In P. Bentley, editor,
Evolutionary Design by Computers, pages 387–403. Morgan Kaufmann, 1999.

[68] Di Caro G. and M. Dorigo. Antnet: Distributed stigmergetic control for communica-
tions networks. Journal of Artificial Intelligence Research (JAIR), 9:317–365, 1998.

[69] Di Caro G. and M. Dorigo. Mobile agents for adaptive routing. In Proceedings of
the 31st Hawaii International Conference on System, pages 74–83. IEEE Computer
Society Press, 1998.

[70] Niloy Ganguly, Biplab K. Sikdar, Andreas Deutsch, Geoffrey Canright, and P. Pal
Chaudhuri. A survey on cellular automata. Technical report, Centre for High Per-
formance Computing, Dresden University of Technology, December 2003.

[71] M. R. Garey and D. S. Johnson. Computers and Intractability: a Guide to the Theory
of NP-Completeness. W.H. Freeman, New York, 1979.

[72] Nigel Gilbert. Artificial Societies: The Computer Simulation of Social Life, chapter
Emergence in Social Simulation, pages 144–156. UCL Press, London, 1995.

[73] M. Giurfa and E. Capaldi. Vectors, routes and maps: new discoveries about navigation
in insects. Trends Neurosci, (22):237–242, 1999.

[74] D.E. Goldberg. Genetic Algorithms in Search, Optimization & Machine Learning.
Addison-Wesley Longman, 1989.

[75] D.E. Goldberg and Jr. R. Lingle. Alleles, loci and the tsp. In J. J. Grefenstette,
editor, Proceedings of the First International Conference on Genetic Algorithms and
Their Applications, pages 154–159. Lawrence Erlbaum, 1985.

[76] P.-P. Grassé. La reconstruction du nid et les coordination inter-individuelles chez belli-
cositermes natalensis et cubitermes sp. la thérie de la stigmergie: Essai d’interprétation
du comportement des termites constructeurs. Insect. Soc., 6:41–80, 1959.

[77] David G. Green and David Newth. Towards a theory of everything? – grand challenges
in complexity and informatics. Complexity International, 8, 2001.

[78] J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht. Genetic algorithms for the
tsp. In J. J. Grefenstette, editor, Proceedings of the First International Conference on
Genetic Algorithms and Their Applications, pages 160–165. Lawrence Erlbaum, 1985.

[79] Jonathan L. Gross and Jay Yellen. Handbook of Graph Theory. CRC Press, 2003.

BIBLIOGRAPHY 272

[80] Mika Hirvensalo. Copying quantum computer makes np-complete problems tractable
(tucs technical report no. 161). Technical report, Turku Centre for Computer Science,
1998.

[81] L. Holder, D. Cook, and S. Djoko. Substructure discovery in the subdue system. In
Proceedings of the Workshop on Knowledge Discovery in Databases, pages 169–180,
1994.

[82] L. B. Holder. Empirical substructure discovery. In Proceedings of the Sixth Interna-
tional Workshop on Machine Learning, pages 133–136, 1989.

[83] Lawrence B. Holder, Diane J. Cook, and Horst Bunke. Fuzzy substructure discovery. In
Proceedings of the Ninth International Machine Learning Conference, pages 218–223,
1992.

[84] J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1992.

[85] John Holland. Emergence: From Chaos to Order. Addison-Wesley, 1997.

[86] O. Holland and C. Melhuish. Stigmergy, self-organization and sorting in collective
robotics. Artificial Life, (5), 1999.

[87] Bert Hölldobler and Edward O. Wilson. Journey to the Ants. Harvard University
Press, 1995.

[88] Uwe Homberg. In search of the sky compass in the insect brain. Naturwissenschaften,
(91):199–208, 2004.

[89] K. Hosokawa, T. Tsujimori, T. Fujii, H. Kaetsu, H. Asama, and Y. Kuroda. Mech-
anisms for self-organizing robots which reconfigure in a vertical plane. In T. Lueth,
R. Dillman, P. Dario, and H. Worn, editors, Proceedings Distributed Autonomous Ro-
botic Systems 3, DARS ’98, pages 111–118. Springer-Verlag, 1998.

[90] T.L. Huntsberger, P. Pirjanian, and P.S. Schenker. Robotic outposts as precursors
to a manned mars habitat. In Proc. Space Technology and Applications International
Forum (STAIF-2001), pages 46–51, 2001.

[91] A. S. Jain and S. Meeran. A state-of-the-art review of job-shop scheduling techniques.
Technical report, Department of Applied Physics, Electronic and Mechanical Engin-
eering, University of Dundee, Dundee, Scotland, 1998.

[92] Chris V. Jones and Maja J. Mataric. From local to global behavior in intelligent
self-assembly. In IEEE International Conference on Robotics and Automation, pages
721–726, September 2003.

[93] M. Jüunger, G. Reinelt, and G. Rinaldi. Annotated Bibliographies in Combinatorial
Optimization, chapter The Travelling Salesman Problem. J. Wiley & Sons, 1997.

[94] I. Karsai and Z. Pénzes. Comb building in social wasps: self-organization and stigmer-
gic scripts. J. Theor. Biol., 161:505–525, 1993.

[95] Istvan Karsai. Decentralized control of construction behavior in paperwasps: an over-
view of the stigmergy approach. Artificial Life, 5:117–136, 1999.

BIBLIOGRAPHY 273

[96] István Karsai and Zsolt Pénzes. Nest shapes in paper wasps: can the variability
of forms be deduced from the same construction algorithm? Proc. R. Soc. Lond.,
265(B):1261–1268, 1998.

[97] István Karsai and Zsolt Pénzes. Optimality of cell arrangement and rules of thumb of
cell initiation in Polistes dominulus :a modelling approach. Behav. Ecol., 11(4):387–395,
1999.

[98] István Karsai and Guy Theraulaz. Nest building in social wasps. Sociobiology, 265:83–
114, 1995.

[99] Istvan Karsai and John W. Wenzel. Organization and regulation of nest construction
behavior in Metapolybia wasps. Journal of Insect Behavior, 13(1), 2000.

[100] Stuart Kauffman. At Home in the Universe: The Search for the Laws of Self-
Organization and Complexity. Oxford University Press, 1995.

[101] S. Kirkpatrick, C. D. Gelati, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220:671–680, 1983.

[102] J. Kolen and J. Pollack. The observers’ paradox: Apparent computational complexity
in physical systems. Journal of Exp. and Theoret. Artificial Intelligence, 7(3), 1995.

[103] T. Krink and F. Volrath. Analysing spider web-building behaviour with rule-based
simulations and genetic algorithms. J. Theor. Biol., 185:321–331, 1997.

[104] C. R. Kube and H. Zhang. Collective robotics: From social insects to robots. Adaptive
Behaviour, 2:189–218, 1994.

[105] C. R. Kube and H. Zhang. Task modelling in collective robotics. Auton. Robots,
4:53–72, 1997.

[106] C. Ronald Kube and Eric Bonabeau. Cooperative transport by ants and robots. Ro-
botics and Autonomous Systems, 30:85–101, 2000.

[107] C. Ronald Kube and Hong Zhang. Collective robotic intelligence. In Proceedings of the
2nd International Workshop on the Simulation of Adaptive Behaviour, pages 460–468.
MIT Press, 1992.

[108] P. Kuntz, P. Layzell, and D. Snyers. A colony of ant-like agents for partitioning in vlsi
technology. In P. Husbands and I. Harvey, editors, Proceedings of the Fourth European
Conference on Artificial Life, pages 417–424. MIT Press, 1997.

[109] C. G. Langton. Studying artificial life with cellular automata. Physica D, 22:120–149,
1986.

[110] C. G. Langton. Computation at the edge of chaos: Phase transitions and emergent
computation. Physica D, 42:12–37, 1990.

[111] P. Larrañaga, C. Kuijpers, R. Murga, I. Inza, and S. Dizdarevic. Genetic algorithms for
the travelling salesman problem: A review of representations and operators. Artificial
Intelligence Review, 13:129–170, 1999.

BIBLIOGRAPHY 274

[112] E. Lawler, J. Lenstra, A. Rinnooy Kan, and D. Shmoys. The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization. Wiley, 1985.

[113] E. Lumer and B. Faieta. Diversity and adaptation in populations of clustering ants.
In Proceedings of the Third International Conference on the Simulation of Adaptive
Behaviour: From Animals to Animats 3, pages 499–508. MIT Press, 1994.

[114] M. Lüscher. Air-conditioned termite nests. Sci. Am., 205:138–145, 1961.

[115] Zachary Mason. Programming with stigmergy: Using swarms for construction. In
Standish, Abbass, and Bedau, editors, Artificial Life VIII, pages 371–374. MIT Press,
2002.

[116] Maja J. Mataric. Designing emergent behaviors: From local interactions to collect-
ive intelligence. In Animals to Animats 2: Proceedings of the second international
conference on simulation of adaptive behaviour, pages 432–441. MIT Press, 1993.

[117] Maja J. Mataric. Designing and understanding adaptive group behavior. Adaptive
Behaviour, 4(1):51–80, 1995.

[118] Maja J. Mataric and Matthew J. Marjanovic. Synthesizing complex behaviors by
composing simple primitives. In Proceedings, Self Organization and Life, From Simple
Rules to Global Complexity, European Conference on Artificial Life (ECAL-93), pages
698–707, 1993.

[119] H. Meinhardt. The algorithmic beauty of sea shells. Springer-Verlag, 1998.

[120] C. Melhuish, J. Welsby, and C. Edwards. Using templates for defensive wall building
with autonomous mobile ant-like robots. In Towards Intelligent Mobile Robots (TIMR),
1999.

[121] A. S. Mikheyev and W. R. Tschinkel. Nest architecture of the ant formica pallidefulva:
structure, costs and rules of excavation. Insect. Soc., 51:30–36, 2004.

[122] S. Murata, H. Kurokawa, and S. Kokaji. Self-assembling machines. In Proceedings
1994 IEEE Interational Conference on Robotics and Automation, pages 441–448. IEEE
Computer Society Press, 1994.

[123] Christopher L. Nehaniv. Evolution in asynchronous cellular automata. In Proceedings
of the eighth international conference on Artificial life, pages 65–73, 2002.

[124] G. Nicolis. Dynamics of Hierachical Systems. Springer, 1986.

[125] G. Nicolis and I. Prigogine. Self-Organization in Non-equilibrium Systems. Wiley,
1977.

[126] T. O’Conner. Emergent properties. American Philosophical Quarterly, 31:91–104,
1994.

[127] I. M. Oliver, D. J. Smith, and J. R. C. Holland. A study of permuation crossover
operators on the tsp. In J. J. Grefenstette, editor, Genetic Algorithms and Their
Applications: Proceedings of the Second International Conference, pages 224–230, 1987.

BIBLIOGRAPHY 275

[128] A. Pamecha, C.-J. Chiang, D. Stein, and G. S. Chirikjian. Design and implementa-
tion of metamorphic robots. In Proceedings 1996 ASME Design Enineering Technical
Conference and Computers and Engineering Conference, pages 1–10. AMSE Press,
1996.

[129] H. Van Dyke Paranuk. Making swarming happen. In Proc. Conference on Swarming
and Network Enabled Command, Control, Communications, Computers, Intelligence,
Surveillance and Reconnaissance (C4ISR), 2003.

[130] H. Van Dyke Paranuk and Raymond S. VanderBok. Managing emergent behavior in
distributed control systems. 1997.

[131] Chris A. Parker, H. Zang, and C. Ronald Kube. Blind bulldozing: Multiple robot
nest construction. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2010–2015, 2003.

[132] J. M. Pasteels, J.-L. Deneubourg, and S. Goss. Self organisation mechanisms in ant
societies (i) trail recruitment to newly discovered food sources. In J. M. Pasteels
and J.-L. Deneubourg, editors, From individual to collective behaviour in social insects
(Experimentia Supplementum), volume 54, pages 155–175. Springer-Verlag, 1987.

[133] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants. Springer-
Verlag, 1990.

[134] E. Rabaud. Phénoméne social et société animale. Paris: F. Alcan., 1937.

[135] T. S. Ray. Evolution, evology and optimization of digital organisms. Technical Report
92-08-042, Santa Fe Institute, 1992.

[136] G. Reinelt. Tsplib - a traveling salesman library. ORSA Journal on Computing,
3(4):376–384, 1991.

[137] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model. Com-
puter Graphics, 21:25–34, 1987.

[138] J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific, 1989.

[139] Edmund M. A. Ronald, Moshe Sipper, and Mathieu S. Capcarrere. Design, observa-
tion, surprise! a test of emergence. Artificial Life, 5:225–239, 1999.

[140] R. Rucker. Artificial Life Lab. The Waite Group Press, Corte Madera, CA., 1993.

[141] R. Schoonderwoerd, O. Holland, J. Bruten, and L. Rothkrantz. Ant-based load bal-
ancing in telecommunications networks. Adaptive Behaviour, 5(2):169–207, 1997.

[142] B. Scönfisch and A. de Roos. Synchronous and asynchonrous updating in cellular
automata. BioSystems, 51:123–143, 1999.

[143] S. K. Scott. Oscillations, Waves and Chaos in Chemical Kinetics. Oxford University
Press, 1994.

[144] J. Searle. Minds, brains and programs. The Behavioral and Brain Sciences, 36:417–424,
1980.

BIBLIOGRAPHY 276

[145] A. P. Smith. An investigation of the mechanisms underlying nest construction in the
mud wasp paralstor sp. (hymenoptera: Eumendinae). Animal Behaviour, 1978.

[146] R. V. Solé, B. Luque, and S. Kauffman. Phase transitions in random networks with
multiple states. Technical Report 00-02-011, Santa Fe Institute, 2000.

[147] Ricard V. Solé, Ramon Ferrer-Cancho, Jose M. Montoya, and Segi Valverde. Selection,
tinkering and emergence in complex networks. Complexity, 8(1):20–33, 2003.

[148] H. Spencer. The principles of sociology. New York, 1882.

[149] Luc Steels. Cooperation between distributed agents throough self-organization, pages
175–196. North-Holland, 1990.

[150] Luc Steels. The artificial life roots of artificial intelligence. Artificial Life, 1:75–110,
1994.

[151] A. M. Stuart. Alarm, defense, and construction behavior relationships in termites
(isoptera). Science, 156:1123–1125, 1967.

[152] Tomoaki Suzudo. Searching for pattern-forming asynchronous cellular automata - an
evolutionary approach. In ACRI 2004, pages 151–160, 2004.

[153] H. L. Swinney and J. P. Gollub. Hydrodynamic Instabilities and the Transition to
Turbulence. Springer-Verlag, 1981.

[154] Jr. T. A. Witten and Paul Meakin. Diffusion-limited aggregation at multiple growth
sites. Phys. Rev. B, 28:5632–5642, 1983.

[155] O. Terán, B. Edmonds, and S. Wallis. Mapping the envelope of social simulation
trajectories. Multi Agent Based Simulation 2000 (MABS200) - LNAI, 1979:229–243,
2001.

[156] G. Theraulaz and E. Bonabeau. Modelling the collective building of complex architec-
tures in social insects with lattice swarms. J. Theor. Biol., 171:381–400, 1995.

[157] G. Theraulaz and E. Bonabeau. A brief history of stigmergy. Artificial Life, 5:97–116,
1999.

[158] Guy Theraulaz and Eric Bonabeau. Coordination in distributed building. Science,
269:686–688, 1995.

[159] A. Turing. On computable numbers, with an application to the entscheidungs problem.
Proceedings of the London Mathematical Society, Series 2, 42:230–265, 1936.

[160] Takeaki Uno and Mutsunori Yagiura. Fast algorithms to enumerate all common inter-
vals of two permutations. Algorithmica, 26(2):290–309, 2000.

[161] Peter Wavish. Exploiting emergent behaviour in multi-agent systems. In Decentralized
A.I. 3 – Proceedings of the Third European Workshop on Modelling Autonomous Agents
and Multi-Agents World (MAAMAW-91), pages 297–310, 1991.

[162] R. Wehner. Desert ant navigation: how minature brains solve complex tasks. J Comp
Physiol A, (189):579–588, 2003.

BIBLIOGRAPHY 277

[163] W. M. Wheeler. The ant colony as an organism. Journal of Morphology, 22:307–325,
1911.

[164] G. M. Whitesides, J. P. Mathias, and C. T. Seto. Molecular self-assembly and nano-
chemistry - a chemical strategy for the synthesis of nanostructures. Science, 254:1312–
1319, 1991.

[165] Stephen Wolfram. Statistical mechanics of cellular automata. Rev. Mod. Phys., 55:601–
644, 1983.

[166] Stephen Wolfram. A New Kind Of Science. Wolfram Media, 2002.

[167] W. A. Wright, R. E. Smith, M. Danek, and P. Greenway. A measure of emergence in
an adapting, multi-agent context. In SAB 2000 Proceedings Supplement, pages 20–27,
2000.

[168] Andrew Wuensche and Michael J. Lesser. The Global Dynamics of Cellular Automata,
chapter The Transition Function and Global Dynamics, pages 15–49. Santa Fe Studies,
1992.

[169] T. Yamada and R. Nakano. Genetic algorithms for job-shop scheduling problems. In
Proceedings of Modern Heuristic for Decision Support, pages 67–81, 1997.

[170] E. Yoshida, S. Murata, K. Tomita, and H. Kurokawa. Distributed formation control
for a modular mechanical system. In Proceedings IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS ’97. IEEE Computer Society Press, 1997.

	Introduction
	Dial M For Mars
	At Home in the Universe
	Remote Robotic Construction
	Construction on Mars: A Summary

	The Rise of the Insects
	Emergence and Collective Intelligence
	Why Use Swarm Intelligence?
	Swarm Intelligence for Autonomous Construction

	The Nest Model of Swarm Construction
	Nest in Action
	Nest -- A Candidate for Autonomous Construction

	Designing Emergence and Swarm Construction
	Thesis Outline

	Related Work
	Emergence
	Defining Emergence
	Second-Order Emergence
	Strong and Weak Emergence
	Detecting and Measuring Emergence
	Emergence and Self-Organisation
	Emergence in Abstract Systems

	Emergent Multiagent Systems: Swarm Intelligence
	Swarm Intelligence
	Foraging
	Cooperative Transport
	Clustering and Sorting
	Construction and Coordinated Assembly
	Ant Colony Optimisation

	Stigmergy
	A Brief History
	Types of Stigmergy
	Quantitative Stigmergy
	Qualitative Stigmergy
	Alternative Stigmergic Mechanisms
	Some Stigmergic Systems
	Stigmergy, ACO and Swarm Intelligence

	Designing Emergent Multiagent Systems
	Controlling Emergence via Symbolic Behaviours
	From Simulation To Robotics
	Designing Emergence with Stigmergic Construction

	Initial Conclusions

	Nest-2.11.1 -- Nest Building using Discrete Stigmergy
	Lattice Swarms
	Terminology

	The Nest-2.11.1 Software
	Nest-2.11.1 Implementation

	Coordinated Algorithms and Coherent Structures
	Evolution of Stigmergic Algorithms
	An Improved Fitness Function
	Results

	Critical Evaluation
	Algorithm Length
	A Subjective Fitness Function
	Smoothness of the Problem Space

	Related Systems
	Variations on Abstract Stigmergy
	Relationships to Other Abstract Emergent Systems

	Nest-2.11.1 -- Summary

	The Nest-3.0 System
	Nest-3.0 vs. Nest-2.11.1
	Abstract Stigmergic Improvements
	Brick Geometry
	Perceiving the Local Environment
	Rotation
	Agent Behaviour
	Architecture Modification - Building and Excavation
	Rule Matching

	Implementation Overview
	Programming Languages and Libraries
	System Architecture

	Implementation Details
	System Objects
	Cells, Bricks and States

	Cubic Geometry
	Matching Neighbourhoods using Bit Arrays
	Rotation of Cubic Structures
	Rotating Architectures using Index Mapping
	File Format
	Summary

	Hexagonal Geometry
	Rotation of Hexagonal Structures
	File Format
	Summary

	Simulation Implementation
	The Simulation
	Agent Implementation
	Simulation Optimisations

	Future Extensions
	More Geometries
	Agent State
	Pheromones
	Architecture Evaluation

	Nest-3.0 Summary

	Automatic Generation of Coordinated Stigmergic Algorithms
	Coordinated Algorithms
	Building Stages

	Coherent Structure: Measuring the Value of Architectures
	Existing Nest-2.11.1 Measures of the `Coherency' of Structures
	Architectural `Features'
	Structural Coherence through Behavioural Consistency
	Structure without Stages
	The Perception of Structure

	Beyond Stages: Post-Rules
	The Simplest Stigmergic System
	The Simplest Rule and The Two-Colour Assertion

	A Note Regarding Geometries and Dimensionality
	Post-Rules
	Pre-Rules
	Meta-Rules
	Post-rules, Pre-rules and Excavation
	Pre- and Post-rules -- Summary

	Automatic Generation of Stigmergic Algorithms using Post-Rules
	An Intractable Problem Space
	Rule Selection in Algorithm Generation
	Post-Rules and Algorithm Generation
	Single-Rule Systems and Post-Rule Uncertainty
	The Real Benefit of Post-Rule Selection

	Automatic Algorithm Generation -- Summary

	Automatic Algorithm Extraction
	The `Holy Grail'
	From Modelling to Manufacturing: Applied Stigmergy

	Simple Stigmergic Algorithm Extraction
	Ordering and Rule Extraction
	Brick Colours
	Simple Algorithm Extraction -- Summary

	Simple Algorithm Extraction Assumptions
	The Assumption of Coordination

	Practical Algorithm Extraction: A First Attempt
	Ordering
	State Assignment

	Simple Stigmergic Script Extraction: Summary and Evaluation
	Properties of Extracted Stigmergic Algorithms
	Quality of Extracted Algorithms
	Improving Algorithm Extraction

	State Assignment
	Brick States and Rule Conflict Management
	Post-Rule Conflict Resolution
	The Simplest System, Revisited

	From One to Many: Desired Post-Rules
	State Assignment with Two Rules

	Brick Tagging
	Missing Post-Rule Information
	Assigning Values to Post-Rule Bricks
	Tagging
	Minimal State Assignment

	The Increasing States Algorithm
	State Assignment and Rotated Rules
	Evaluation of Increasing States Algorithm

	Ordering
	The Importance of Ordering
	Ordering Problems
	Job-Shop Scheduling
	Genetic Algorithms for Combinatorial Problems
	An Overview of the Genetic Algorithm Approach

	Ordering Bricks using a Genetic Algorithm
	Direct Encoding of Brick Ordering
	Crossover using Direct Encoding
	Repetition
	Structurally Invalid Orderings
	Mutation using Direct Encoding
	Summary of Direct Encoding

	Indirect Representation of Brick Ordering
	Crossover using Indirect Encoding
	Mutation using Indirect Encoding
	Indirect Encoding Example

	Genetic Algorithm Implementation
	Experimental Results
	Fitness Trends
	Experimental Parameter Selection

	Evaluation of Ordering Using Genetic Algorithms
	Algorithm Extraction -- Summary Review
	Limitations of Increasing States and Ordering

	Pattern-based Ordering
	Patterns and Substructures
	A Simple, Minimal Example
	Repeating Rules
	Modularity and Types of Repetition
	From Repeated Modules to Building Stages
	Architecture Construction using Repetition

	Accuracy and Control in Architecture Construction
	Limiting Stigmergic Construction in Nest
	Precisely-Sized Structures
	Minimal Brick Colours and Accurate Replication

	Accurate Construction with Repeating Modules
	Local vs. Global Measurement
	Accurate Construction With Repeated Modules -- Summary

	Pattern-based Rule Extraction from Existing Structures
	A Simple Example of Pattern-based Rule Extraction
	Automatic Pattern-based Rule Extraction

	Automatic Identification of Structural Patterns
	Substructure Discovery
	The Application of SUBDUE to Stigmergic Algorithm Extraction
	Pattern Selection and Sets of Patterns
	Pattern Set Selection and Intractability

	Modular Overlap and Brick Colour Assignment
	Modular Overlap and The Increasing States Algorithm
	Modular Overlap and Ordering

	Self-Activating Modules and Endless Construction
	Structural Dependencies and Ordering
	Self-Activating Modules and Rotation

	Summary -- Limitations of Pattern Extraction
	Guaranteeing Minimality
	Modular Construction in Other Abstract Systems
	Stigmergy, Local Information and the Limits of Nest

	Discussion
	Designing Emergence with Stigmergy
	Nest Systems and the Real World
	Limiting Building Behaviour using Quantitative Stigmergy
	Quantitative Stigmergy and Global Construction Control
	Quantitative Stigmergic and Algorithm Extraction

	A Measure Of Stigmergic Algorithm Quality
	Stigmergic Algorithm Complexity
	Stigmergic Algorithm Quality
	Algorithm Quality and The Motivation for Emergence

	Stigmergic Complexity
	Beyond Modules: The Construction of Features
	Future Work
	Beyond The Nest Model
	Stigmergic Architecture Repair
	An Interactive Approach to Modular Deconstruction

	Conclusions
	Bibliography

